
On the Existence of Double 3-Term Arithmetic
Progressions

Andrew Poelstra

IRMACS Ramsey Theory Working Group
Department of Mathematics

Simon Fraser University

May 4, 2012

1 / 50



Consider a sequence x1, x2, x3, . . . of positive integers.

An arithmetic progression is a finite subsequence
xi1 , xi2 , · · · , xiN with a constant difference d between
consecutive entries.

For example, if 2, 4 and 6 showed up in our sequence, this
would be an arithmetic progression. Ditto for 1, 4, 7 and 10.
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A double arithmetic progression has constant difference and
constant spacing between consecutive entries.
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Can we find a sequence with no double 3-AP’s?

Yes. To generate such a sequence, take the base-4 expansion
of each positive integer. Replace 1 by 2, and 2 by 1.

The first few terms are

24, 14, 34, 204, 224, 214, 234, 1004, 1024, 1014, 1034, 1204, . . .

or in base 10,

2, 1, 3, 8, 10, 9, 11, 4, 6, 5, 7, 12, . . .

This sequence was published by A. F. Sidorenko in 1988.
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Consider a 3-term AP, which has the form x , x + d , x + 2d .

Since
x + (x + 2d) = 2(x + d)

it can be characterized as a solution to

x + y = 2z .

This makes 3-term AP’s easier (and faster!) to compute with.
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One last definition:

A 3-coloring of an interval [1, N] is a partitioning of the
interval into 3 disjoint cells, or colors, as

{x1, x2, . . . , xn} ∪ {y1, y2, . . . , ym} ∪ {z1, z2, . . . , zν}

(In general, an r-coloring is the same, except with r cells.)

For example, we might 3-color the interval [1, 10] as

{1, 3, 6, 10} ∪ {2, 5, 7, 9} ∪ {4, 8}

Graphically,
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Next, we introduce van der Waerden’s Theorem.

Given any r ≥ 2, k ≥ 2, we can find an integer w such that
every r -coloring of [1, w ] contains a monochromatic k-AP.

In 1927, B. L. van der Waerden (1903-1996) proved this
theorem. It had been conjectured (in a less general form) by
Baudet (1891-1921) some years earlier.

It is one the earliest theorems in Ramsey Theory. Together
with Schur’s Theorem and Ramsey’s Theorem, it forms the
basis of the field.
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Although van der Waerden’s theorem guarantees some
minimum w for every pair (r , k), these numbers grow much
too fast to be computed efficiently.

The six known non-trivial values are:

w(2, 3) = 9 w(2, 4) = 35
w(2, 5) = 178 w(2, 6) = 1132
w(3, 3) = 27 w(4, 3) = 76

To contrast, the current best upper bound for a given r and
k, published by Timothy Gowers in 1998, is

w(r , k) ≤ 22r2
2k+9
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Ron Graham has a $1000 prize waiting for anyone who can prove

w(2, k) ≤ 2k2
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Let’s modify the statement of van der Waerden’s theorem, to ask

Given some r ≥ 2, k ≥ 2, can we find a number w∗ such that
every r -coloring of [1, w∗] contains a monochromatic k-term
double AP?

We don’t know.

Here are the known non-trivial values of w∗(r , k):

w∗(2, 3) = 17
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Let’s take a moment to consider a connection between this
question and one about infinite words on finite alphabets.

Consider a finite alphabet with integer letters. Let w be an
infinite word on this alphabet.

If w contains no adjacent blocks of same size and same sum,
we say that it is additive square-free.

Do any additive square-free words exist?

As it turns out, this question is equivalent to our question
about double 3-term AP’s.
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Back to the problem at hand.

The method for calculating each w∗(r , k) is to consider an
r -coloring of [1, n] with no double k-AP’s, and extend it to
[1, (n + 1)]. We do this as many times as we can.

Abstractly, we define a recursion tree and try to compute its
height.
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Computationally, searching for double AP’s is actually easier
than searching for ordinary AP’s, but the space to search is
much larger.

So, if these numbers are computationally inaccessible, and no
good analytic bounds have been found, where can we go from
here? One strategy is to restrict the problem, and explore.

We do this with the utility RamseyScript, developed by our
group at IRMACS and freely available online.
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For example, let’s focus our attention on 3-term AP’s and
3-colorings, and restrict the spacing between elements of each
color.

This coloring has maximal gap size 3 between green elements
and maximal gap size 4 between red and blue elements.
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We have the following results.

Max Green Gaps
3 4 5 6 7+

M
ax

B
lu

e
G

ap
s 3 22

4 31 31
5 33 38 43
6 33 49 44 45
7 33 49 46 46 46

8+ 33 49 46 46 47

Max Red Gap 3
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Max Green Gaps
4 5 6 7 8 9+

M
ax

B
lu

e
G

ap
s

4 39
5 49 63
6 56 79 91
7 76 96 >105 >121
8 81 96 >114 >121 >130
9 81 96 >114 >133 >130 >131

10 81 96 >114 >133 >135 >135
11+ 81 97 >114 >133 >135 >135

Max Red Gap 4
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Max Green
5 6 7 8+

M
ax

B
lu

e 5 100
6 > 113 > 133
7 ? ? ?

8+ ? ? ? ?

Max Red Gap 5
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Alternately, let’s consider 2-colorings, and vary the AP length.

Red
2 3

B
lu

e 2 7
3 11 17

Double 3-AP’s
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Red
2 3 4+

B
lu

e 2 11
3 22 > 176

4+ 22 > 2690 > 3573

Double 4-AP’s
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Red
2 3 4 5+

B
lu

e 2 15
3 37 > 131000
4 > 25503 ? ?

5+ > 33366 ? ? ?

Double 5-AP’s
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Based on this evidence, I propose the following:

w∗(2, 3) and w∗(3, 3) exist; i.e., there is some number N such
that every 2-coloring of [1, N] contains a double 3-AP, and
some M such that every 3-coloring of [1, M] contains a double
3-AP.

w∗(r , k) does not exist for any greater r or k .
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Thank You

Andrew Poelstra <asp11@sfu.ca>
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