Rainbow AP Data

Definition 1. Fix integers $r \ge 1$, $k \ge 1$. Suppose some number N exists such that every r-coloring of [1, N] contains either a monochromatic k-term arithmetic progression, or a "rainbow AP", i.e., a r-term arithmetic progression with one term of each color.

We denote the least such N by $\rho(k; r)$.

Definition 2. With r and k as before, suppose N exists so that every r-coloring contains a k-term double AP, or a rainbow AP. We denote the least such N by $\rho^*(k; r)$.

We notice that any r-coloring of a set is also a (r + 1)-coloring which never uses the (r + 1)th color. When considered this way, it is necessarily rainbow-AP-free, since rainbow AP's use every color. We therefore obtain the following relations:

$$w(k;r) \le \rho(k;r+1)$$
$$w^*(k;r) \le \rho^*(k;r+1)$$

In particular the existence of ρ^* numbers implies the existence of w^* . The converse is also clear ("every coloring has a double AP" implies "every coloring has a double AP or rainbow AP"), so we get the following theorem:

Theorem 1. $\rho^*(k; r)$ exists for all $k, r \ge 1$ iff $w^*(k; r)$ does.

Proof. By the above reasoning,

$$\rho(k;r) \le w(k;r) \le \rho(k;r+1) \le w(k;r+1)$$
$$\rho^*(k;r) \le w^*(k;r+1) \le w^*(k;r+1)$$

We also notice that for all k, $\rho(k, 1) = \rho^*(k, 1) = 1$, and for all r, $\rho(1, r) = \rho^*(1, r) = 1$, so we'll ignore these trivial cases.

Also, when k = 2, every *r*-coloring of [1, r] either contains two elements the same color (and thus a 2-AP and 2-DAP), or all elements different colors (and thus a rainbow AP). We conclude that $\rho^*(2, r) = \rho(2, r) = r$.

Similarly, when r = 2, every 2-coloring of [1, k] either contains a k-AP (everything is one color) or a rainbow AP (two things are each a different color). So $\rho^*(k, 2) = \rho(k, 2) = k$.

By brute-force searching, I have obtained the following additional ρ values:

	<u>rho</u>						<u>rho*</u>				
k∖r	3	4	5	6	7	k∖r	3	4	5	6	7
3	9	57	>84	>152	>164	3	17	>295	>2036	>4256	>6211
4	53	>125	>161	>308		4	>3416	>63500			
5	>292	>226	>607			5	>77500				
6	>163	>429				6					
7	>195					7					