On the Existence of Double 3-Term Arithmetic Progressions

Andrew Poelstra

IRMACS Ramsey Theory Working Group Department of Mathematics Simon Fraser University

May 4, 2012

• Consider a sequence x_1, x_2, x_3, \ldots of positive integers.

- Consider a sequence x_1, x_2, x_3, \ldots of positive integers.
- An **arithmetic progression** is a finite subsequence $x_{i_1}, x_{i_2}, \dots, x_{i_N}$ with a constant difference *d* between consecutive entries.

- Consider a sequence x_1, x_2, x_3, \ldots of positive integers.
- An **arithmetic progression** is a finite subsequence $x_{i_1}, x_{i_2}, \dots, x_{i_N}$ with a constant difference *d* between consecutive entries.
- For example, if 2, 4 and 6 showed up in our sequence, this would be an arithmetic progression. Ditto for 1, 4, 7 and 10.

A **double** arithmetic progression has constant difference *and* constant spacing between consecutive entries.

A **double** arithmetic progression has constant difference *and* constant spacing between consecutive entries.

• Yes. To generate such a sequence, take the base-4 expansion of each positive integer. Replace 1 by 2, and 2 by 1.

12

- Yes. To generate such a sequence, take the base-4 expansion of each positive integer. Replace 1 by 2, and 2 by 1.
- The first few terms are

 $2_4, 1_4, 3_4, 20_4, 22_4, 21_4, 23_4, 100_4, 102_4, 101_4, 103_4, 120_4, \ldots$

or in base 10,

 $2, 1, 3, 8, 10, 9, 11, 4, 6, 5, 7, 12, \ldots$

- Yes. To generate such a sequence, take the base-4 expansion of each positive integer. Replace 1 by 2, and 2 by 1.
- The first few terms are

 $2_4, 1_4, 3_4, 20_4, 22_4, 21_4, 23_4, 100_4, 102_4, 101_4, 103_4, 120_4, \dots$

```
or in base 10,
```

 $2, 1, 3, 8, 10, 9, 11, 4, 6, 5, 7, 12, \ldots$

This sequence was published by A. F. Sidorenko in 1988.

• Consider a 3-term AP, which has the form x, x + d, x + 2d.

Consider a 3-term AP, which has the form x, x + d, x + 2d.
Since

$$x + (x + 2d) = 2(x + d)$$

it can be characterized as a solution to

$$x+y=2z.$$

Consider a 3-term AP, which has the form x, x + d, x + 2d.
Since

$$x + (x + 2d) = 2(x + d)$$

it can be characterized as a solution to

$$x + y = 2z$$
.

This makes 3-term AP's easier (and faster!) to compute with.

One last definition:

■ A **3-coloring** of an interval [1, *N*] is a partitioning of the interval into 3 disjoint cells, or colors, as

$$\{x_1, x_2, \ldots, x_n\} \cup \{y_1, y_2, \ldots, y_m\} \cup \{z_1, z_2, \ldots, z_\nu\}$$

(In general, an *r*-coloring is the same, except with *r* cells.)

One last definition:

■ A **3-coloring** of an interval [1, *N*] is a partitioning of the interval into 3 disjoint cells, or colors, as

$$\{x_1, x_2, \ldots, x_n\} \cup \{y_1, y_2, \ldots, y_m\} \cup \{z_1, z_2, \ldots, z_\nu\}$$

(In general, an *r*-coloring is the same, except with *r* cells.)
For example, we might 3-color the interval [1, 10] as

 $\{1,3,6,10\}\cup\{2,5,7,9\}\cup\{4,8\}$

Graphically,

Given any r ≥ 2, k ≥ 2, we can find an integer w such that every r-coloring of [1, w] contains a monochromatic k-AP.

- Given any r ≥ 2, k ≥ 2, we can find an integer w such that every r-coloring of [1, w] contains a monochromatic k-AP.
- In 1927, B. L. van der Waerden (1903-1996) proved this theorem. It had been conjectured (in a less general form) by Baudet (1891-1921) some years earlier.

- Given any r ≥ 2, k ≥ 2, we can find an integer w such that every r-coloring of [1, w] contains a monochromatic k-AP.
- In 1927, B. L. van der Waerden (1903-1996) proved this theorem. It had been conjectured (in a less general form) by Baudet (1891-1921) some years earlier.
- It is one the earliest theorems in Ramsey Theory. Together with Schur's Theorem and Ramsey's Theorem, it forms the basis of the field.

Although van der Waerden's theorem guarantees some minimum w for every pair (r, k), these numbers grow much too fast to be computed efficiently.

- Although van der Waerden's theorem guarantees some minimum w for every pair (r, k), these numbers grow much too fast to be computed efficiently.
- The six known non-trivial values are:

- Although van der Waerden's theorem guarantees some minimum w for every pair (r, k), these numbers grow much too fast to be computed efficiently.
- The six known non-trivial values are:

 To contrast, the current best upper bound for a given r and k, published by Timothy Gowers in 1998, is

$$w(r,k) \leq 2^{2^{r^{2^{2^{k+9}}}}}$$

Ron Graham has a \$1000 prize waiting for anyone who can prove

$$w(2,k) \leq 2^{k^2}$$

イロト イロト イヨト イヨト 二日

 Given some r ≥ 2, k ≥ 2, can we find a number w* such that every r-coloring of [1, w*] contains a monochromatic k-term double AP?

■ Given some r ≥ 2, k ≥ 2, can we find a number w* such that every r-coloring of [1, w*] contains a monochromatic k-term double AP?

イロト 不得下 イヨト イヨト 二日

25 / 50

We don't know.

- Given some r ≥ 2, k ≥ 2, can we find a number w* such that every r-coloring of [1, w*] contains a monochromatic k-term double AP?
- We don't know.
- Here are the known non-trivial values of $w^*(r, k)$:

- Given some r ≥ 2, k ≥ 2, can we find a number w* such that every r-coloring of [1, w*] contains a monochromatic k-term double AP?
- We don't know.
- Here are the known non-trivial values of $w^*(r, k)$:

$$w^*(2,3) = 17$$

イロト 不得下 イヨト イヨト 二日

• Consider a finite alphabet with integer letters. Let *w* be an infinite word on this alphabet.

- Consider a finite alphabet with integer letters. Let *w* be an infinite word on this alphabet.
- If w contains no adjacent blocks of same size and same sum, we say that it is additive square-free.

- Consider a finite alphabet with integer letters. Let *w* be an infinite word on this alphabet.
- If w contains no adjacent blocks of same size and same sum, we say that it is additive square-free.
- Do any additive square-free words exist?

- Consider a finite alphabet with integer letters. Let *w* be an infinite word on this alphabet.
- If w contains no adjacent blocks of same size and same sum, we say that it is additive square-free.
- Do any additive square-free words exist?
- As it turns out, this question is equivalent to our question about double 3-term AP's.

Back to the problem at hand.

Back to the problem at hand.

The method for calculating each w*(r, k) is to consider an r-coloring of [1, n] with no double k-AP's, and extend it to [1, (n + 1)]. We do this as many times as we can.

Back to the problem at hand.

- The method for calculating each w*(r, k) is to consider an r-coloring of [1, n] with no double k-AP's, and extend it to [1, (n + 1)]. We do this as many times as we can.
- Abstractly, we define a recursion tree and try to compute its height.

 Computationally, searching for double AP's is actually easier than searching for ordinary AP's, but the space to search is much larger.
- Computationally, searching for double AP's is actually easier than searching for ordinary AP's, but the space to search is much larger.
- So, if these numbers are computationally inaccessible, and no good analytic bounds have been found, where can we go from here? One strategy is to restrict the problem, and explore.

- Computationally, searching for double AP's is actually easier than searching for ordinary AP's, but the space to search is much larger.
- So, if these numbers are computationally inaccessible, and no good analytic bounds have been found, where can we go from here? One strategy is to restrict the problem, and explore.
- We do this with the utility RamseyScript, developed by our group at IRMACS and freely available online.

 For example, let's focus our attention on 3-term AP's and 3-colorings, and restrict the spacing between elements of each color.

- For example, let's focus our attention on 3-term AP's and 3-colorings, and restrict the spacing between elements of each color.
- This coloring has maximal gap size 3 between green elements and maximal gap size 4 between red and blue elements.

イロト 不得 とくき とくきとう き

We have the following results.

		Max Green Gaps				
		3	4	5	6	7+
bs	3	22				
Gaps	4	31	31			
Blue	5	33	38	43		
	6	33	49	44	45	
Max	7	33	49	46	46	46
≥	8+	33	49	46	46	47
Max Red Gan 3						

Max Red Gap 3

		Max Green Gaps					
		4	5	6	7	8	9+
	4	39					
bs	5	49	63				
Gaps	6	56	79	91			
Blue	7	76	96	>105	>121		
B	8	81	96	>114	>121	>130	
Max I	9	81	96	>114	>133	>130	>131
2	10	81	96	>114	>133	>135	>135
	11 +	81	97	>114	>133	>135	>135
Max Red Gap 4							

		Max Green				
		5	6	7	8+	
Blue	5	100				
	6	> 113	> 133			
Max	7	?	?	?		
≥	8+	?	?	?	?	
Max Red Gap 5						

Alternately, let's consider 2-colorings, and vary the AP length.

		Red		
		2	3	
ne	2	7		
B	3	11	17	
Double 3-AP's				

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

44 / 50

		Red			
		2	3	4+	
e	2	11			
Blue	3	22	> 176		
	4+	22	> 176 > 2690	> 3573	
Double 4-AP's					

			Red			
		2	3	4	5+	
e	2	15				
Blue	3	37	> 131000			
	4	> 25503	?	?		
	5+	> 33366	?	?	?	
Double 5-AP's						

Based on this evidence, I propose the following:

Based on this evidence, I propose the following:

w*(2,3) and w*(3,3) exist; i.e., there is some number N such that every 2-coloring of [1, N] contains a double 3-AP, and some M such that every 3-coloring of [1, M] contains a double 3-AP.

Based on this evidence, I propose the following:

- w*(2,3) and w*(3,3) exist; i.e., there is some number N such that every 2-coloring of [1, N] contains a double 3-AP, and some M such that every 3-coloring of [1, M] contains a double 3-AP.
- $w^*(r, k)$ does not exist for any greater r or k.

Thank You

Andrew Poelstra <asp11@sfu.ca>