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m Consider a sequence xi, x2, X3, ... of positive integers.
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m Consider a sequence xi, x2, X3, ... of positive integers.
m An arithmetic progression is a finite subsequence
Xy Xip, =+, Xj,, With a constant difference d between

consecutive entries.

m For example, if 2,4 and 6 showed up in our sequence, this
would be an arithmetic progression. Ditto for 1, 4, 7 and 10.



A double arithmetic progression has constant difference and
constant spacing between consecutive entries.



A double arithmetic progression has constant difference and
constant spacing between consecutive entries.

1, 7, 15, 19, 25, 26, 32, 39, 44, 47,

52, 59, 66, /3, 75, 79, 87, 89, 94, 99
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or in base 10,
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Can we find a sequence with no double 3-AP’'s?

m Yes. To generate such a sequence, take the base-4 expansion
of each positive integer. Replace 1 by 2, and 2 by 1.

m The first few terms are
24,14,34,204,224,214,234,1004, 1024, 1014, 1034, 120y, ...
or in base 10,
2,1,3,8,10,9,11,4,6,5,7,12, ...

m This sequence was published by A. F. Sidorenko in 1988.
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m Consider a 3-term AP, which has the form x, x + d, x + 2d.
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m Consider a 3-term AP, which has the form x, x + d, x + 2d.

m Since
x+ (x+2d) =2(x+d)

it can be characterized as a solution to

x+y=2z
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m Consider a 3-term AP, which has the form x, x + d, x + 2d.

m Since
x+ (x+2d) =2(x+d)

it can be characterized as a solution to
x+y=2z

m This makes 3-term AP'’s easier (and faster!) to compute with.
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One last definition:

m A 3-coloring of an interval [1, N] is a partitioning of the
interval into 3 disjoint cells, or colors, as

{x1, %0, ..., xn} U{y1, 2, ., Ymt U{z1,22,...,2,}

(In general, an r-coloring is the same, except with r cells.)
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One last definition:

m A 3-coloring of an interval [1, N] is a partitioning of the
interval into 3 disjoint cells, or colors, as

{x1, %0, ..., xn} U{y1, 2, ., Ymt U{z1,22,...,2,}

(In general, an r-coloring is the same, except with r cells.)
m For example, we might 3-color the interval [1,10] as

{1,3,6,10} U {2,5,7,9} U {4,8}
Graphically,
1 2 3 4 5 6 7 & 9 10
o—0—-0—0—0—0—0—0—0—0
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Next, we introduce van der Waerden's Theorem.
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Next, we introduce van der Waerden's Theorem.

m Given any r > 2, k > 2, we can find an integer w such that
every r-coloring of [1, w] contains a monochromatic k-AP.
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Next, we introduce van der Waerden's Theorem.

m Given any r > 2, k > 2, we can find an integer w such that
every r-coloring of [1, w] contains a monochromatic k-AP.

m In 1927, B. L. van der Waerden (1903-1996) proved this
theorem. It had been conjectured (in a less general form) by
Baudet (1891-1921) some years earlier.

18 /50



Next, we introduce van der Waerden's Theorem.

m Given any r > 2, k > 2, we can find an integer w such that
every r-coloring of [1, w] contains a monochromatic k-AP.

m In 1927, B. L. van der Waerden (1903-1996) proved this
theorem. It had been conjectured (in a less general form) by
Baudet (1891-1921) some years earlier.

m It is one the earliest theorems in Ramsey Theory. Together
with Schur’'s Theorem and Ramsey’s Theorem, it forms the
basis of the field.
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m Although van der Waerden's theorem guarantees some
minimum w for every pair (r, k), these numbers grow much
too fast to be computed efficiently.
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m Although van der Waerden's theorem guarantees some
minimum w for every pair (r, k), these numbers grow much
too fast to be computed efficiently.

m The six known non-trivial values are:

w(2,3)=9 w(2, 4) =35
w(2, 5) = 178 w(2, 6) = 1132
w(3, 3) =27 w4 3) =76
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m Although van der Waerden's theorem guarantees some
minimum w for every pair (r, k), these numbers grow much
too fast to be computed efficiently.

m The six known non-trivial values are:

w(2,3)=9 w(2, 4) =35
w(2, 5) = 178 w(2, 6) = 1132
w(3, 3) =27 w4 3) =76

m To contrast, the current best upper bound for a given r and
k, published by Timothy Gowers in 1998, is

k+9
22

w(r, k) < 2%



Ron Graham has a $1000 prize waiting for anyone who can prove

w(2, k) < 2K°
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Let's modify the statement of van der Waerden's theorem, to ask

m Given some r > 2, k > 2, can we find a number w* such that
every r-coloring of [1, w*| contains a monochromatic k-term
double AP?
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Let's modify the statement of van der Waerden's theorem, to ask

m Given some r > 2, k > 2, can we find a number w* such that
every r-coloring of [1, w*| contains a monochromatic k-term

double AP?
m We don’t know.
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Let's modify the statement of van der Waerden's theorem, to ask

m Given some r > 2, k > 2, can we find a number w* such that
every r-coloring of [1, w*| contains a monochromatic k-term

double AP?

m We don’t know.
m Here are the known non-trivial values of w*(r, k):
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Let's modify the statement of van der Waerden's theorem, to ask

m Given some r > 2, k > 2, can we find a number w* such that
every r-coloring of [1, w*| contains a monochromatic k-term

double AP?

m We don’t know.
m Here are the known non-trivial values of w*(r, k):

w*(2,3) = 17

27 /50



Let's take a moment to consider a connection between this
question and one about infinite words on finite alphabets.
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Let's take a moment to consider a connection between this
question and one about infinite words on finite alphabets.

m Consider a finite alphabet with integer letters. Let w be an
infinite word on this alphabet.

29 /50



Let's take a moment to consider a connection between this
question and one about infinite words on finite alphabets.

m Consider a finite alphabet with integer letters. Let w be an
infinite word on this alphabet.

m If w contains no adjacent blocks of same size and same sum,
we say that it is additive square-free.
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Let's take a moment to consider a connection between this
question and one about infinite words on finite alphabets.

m Consider a finite alphabet with integer letters. Let w be an
infinite word on this alphabet.

m If w contains no adjacent blocks of same size and same sum,
we say that it is additive square-free.

m Do any additive square-free words exist?

m As it turns out, this question is equivalent to our question
about double 3-term AP’s.
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Back to the problem at hand.
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Back to the problem at hand.

m The method for calculating each w*(r, k) is to consider an
r-coloring of [1, n] with no double k-AP’s, and extend it to
[1,(n+ 1)]. We do this as many times as we can.
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Back to the problem at hand.
m The method for calculating each w*(r, k) is to consider an
r-coloring of [1, n] with no double k-AP’s, and extend it to
[1,(n+ 1)]. We do this as many times as we can.

m Abstractly, we define a recursion tree and try to compute its
height.
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m Computationally, searching for double AP’s is actually easier
than searching for ordinary AP’s, but the space to search is
much larger.
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m Computationally, searching for double AP’s is actually easier
than searching for ordinary AP’s, but the space to search is
much larger.

m So, if these numbers are computationally inaccessible, and no
good analytic bounds have been found, where can we go from
here? One strategy is to restrict the problem, and explore.
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m Computationally, searching for double AP’s is actually easier
than searching for ordinary AP’s, but the space to search is
much larger.

m So, if these numbers are computationally inaccessible, and no
good analytic bounds have been found, where can we go from
here? One strategy is to restrict the problem, and explore.

m We do this with the utility RamseyScript, developed by our
group at IRMACS and freely available online.
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m For example, let’s focus our attention on 3-term AP’s and
3-colorings, and restrict the spacing between elements of each
color.

39 /50



m For example, let’s focus our attention on 3-term AP’s and
3-colorings, and restrict the spacing between elements of each
color.

m This coloring has maximal gap size 3 between green elements
and maximal gap size 4 between red and blue elements.

1 2 3 4 5 6 7 & 9710
o—-0-0-0—0—0—0—0—0—0
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We have the following results.

Max Green Gaps
3 4 5 6 T+
22
31 31
33 38 43
33 49 44 45
33 49 46 46 46
33 49 46 46 47
Max Red Gap 3

~NOo O bW

Max Blue Gaps

[e0)
+
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Max Green Gaps

4 5 6 7 8 9+
39
49 63
56 79 91

76 96 >105 >121

81 96 >114 >121 >130

81 96 >114 >133 >130 >131
81 96 >114 >133 >135 >135
11+ |81 97 >114 >133 >135 >135
Max Red Gap 4

Max Blue Gaps
[y
o © 0 N O O >
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Max Green
5 6 7 8+
¢ 5 100
m 6 | >113 >133
5 7 ? ? ?
= 84| ? 77 2

Max Red Gap 5
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Alternately, let's consider 2-colorings, and vary the AP length.

Red

2 3
S 27
© 3|11 17

Double 3-AP’s
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Red
2 3 4+
o 2 |11
% 3 122 >176
44+ 122 >12690 > 3573

Double 4-AP'’s
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Red
2 3 4 54
o 2 15
5? 3 37 > 131000
4 | > 25503 ? ?
5+ | > 33366 ? 77

Double 5-AP’s
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Based on this evidence, | propose the following:
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Based on this evidence, | propose the following:

m w*(2,3) and w*(3,3) exist; i.e., there is some number N such
that every 2-coloring of [1, N] contains a double 3-AP, and
some M such that every 3-coloring of [1, M] contains a double
3-AP.
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Based on this evidence, | propose the following:

m w*(2,3) and w*(3,3) exist; i.e., there is some number N such
that every 2-coloring of [1, N] contains a double 3-AP, and
some M such that every 3-coloring of [1, M] contains a double
3-AP.

m w*(r, k) does not exist for any greater r or k.
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Thank You

Andrew Poelstra <asp11@sfu.ca>
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