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1 Preliminaries

De�nition 1. Let I1 = [a1, b1], I2 = [a2, b2] be intervals that are either both closed or both

open in R, with a1 6= b1. Then we de�ne

Λ(I1, I2) : I1 → I2

Λ(I1, I2) : x 7→ (x− a1)
b2 − a2

b1 − a1
+ a2

Lemma 1. Let I1, I2 be intervals as above. Then Λ(I1, I2) is increasing. If b2 6= a2, it is

strictly increasing.

Proof. Let x1, x2 ∈ I1 such that x2 > x1. Then

Λ(I1, I2)(x2)− Λ(I1, I2)(x1) = (x2 − a1)
b2 − a2

b1 − a1
+ a2 − (x1 − a1)

b2 − a2

b1 − a1
+ a2

= (x2 − a1)
b2 − a2

b1 − a1
− (x1 − a1)

b2 − a2

b1 − a1

= (x2 − x1)
b2 − a2

b1 − a1
≥ 0

If b2 > a2, this last inequality is strict.

Lemma 2. Let I1, I2 be intervals as above. Then if b2 6= a2, Λ(I1, I2) is invertible (in fact,

a homeomorphism). Furthermore, Λ−1(I1, I2) = Λ(I2, I1).

Proof. We prove this directly: let x ∈ I1, y = Λ(I1, I2)(x). Then

y = (x− a1)
b2 − a2

b1 − a1
+ a2 =⇒ (y − a2)

b1 − a1

b2 − a2
+ a1 = x

In other words, x = Λ−1(I1, I2)(y) = Λ(I2, I1)(y).

De�nition 2. Let D be a closed interval in R. Then {Di}N1 is a ordered partition of D if:

1. Each Di is either open or closed.

2.
⋃N

i=1Di = D and for i 6= j, Di ∩Dj has at most one point.

3. For i = 1, . . . , N − 1, the right endpoint of Di is the left endpoint of Di+1.

Lemma 3. Let D,R be closed intervals in R. Let {Di}N1 , {Ri}N1 be ordered partitions of

D and R, with each |Di| > 0. Let Λ : D → R be de�ned as

Λ(x) = Λ(Di, Ri)(x) for x ∈ Di
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be a piecewise linear function. Then Λ is well-de�ned and increasing. If all |Ri| > 0, then
Λ is strictly increasing.

Proof. Suppose x ∈ Di ∩Dj for i > j. Then x must be the right endpoint of Di and the

left endpoint of Dj , so by De�nition 1, Λ(Di, Ri) = Λ(Dj , Rj). So Λ is well-de�ned.

Then, by Lemma 1, Λ is increasing (or strictly increasing) on each interval.

Lemma 4. Let D,R be closed intervals in R. Let {Di}N1 , {D′i}M1 be ordered partitions of

D such that |Di| > 0 and |D′i| > 0 for all i. Let {Ri}N1 , {R′i}M1 , be ordered partitions of R.

Let Λ′ : D → R, Λ : D → R be de�ned as

Λ(x) = Λ(Di, Ri)(x) Λ′(x) = Λ(D′i, R
′
i)(x) for x ∈ Di

be piecewise linear functions. Then |Λ(x)− Λ′(x)| ≤ |R| for all x ∈ D.

Proof. By Lemma 3 we have that Λ and Λ′ are strictly increasing. Let d1, d2 be the

endpoints of D, r1, r2 the endpoints of R. By construction Λ(d1) = Λ′(d1) = r1 and

Λ(d2) = Λ′(d2) = r2. Thus, for any x ∈ D,

Λ(d1) = r1 ≤ Λ(x) ≤ r2 = Λ(d2) and Λ′(d1) = r1 ≤ Λ′(x) ≤ r2 = Λ′(d2)

Assume WLOG that Λ′(x) ≤ Λ(x). Then

Λ(x)− Λ′(x) ≤ r2 − Λ′(x) ≤ r2 − r1 = |R|

De�nition 3. We de�ne a Cantor-like sequence to be a sequence {P i}∞0 of ordered parti-

tions of [0, 1] such that P 0 contains the single interval [0, 1], and for all i ≥ 1, P i is de�ned

from P i−1 by replacing each closed interval [a, b] by the three intervals[
a,
b+ a− `i

2

] (
b+ a− `i

2
,
b+ a+ `i

2

) [
b+ a+ `i

2
, b

]
with `i > 0 chosen such that

`1 + 2`2 + 4`3 + · · ·+ 2i−1`i + · · · ≤ 1

De�nition 4. Let {P i}∞0 be a Cantor-like sequence. De�ne a new sequence {Ci}∞1 by

Ci =
∞⋃

j=0

P i
2j i = 0, 1, . . .

so that each Ci is the union of the closed sets in P i. Then

C =
∞⋂

i=1

Ci

is a Cantor-like set.

2



Remark. Choosing `i = 1/3i gives us the traditional �remove one-third� Cantor set.

Choosing `i = 1/22i gives us the Smith�Volterra�Cantor �fat Cantor� set.

2 Facts About Cantor-Like Sets

Let C be an arbitrary Cantor-like set, {Ci} and {P i} as in De�nition 4. We notice:

• The size of the intervals in Ci tend to 0 as i→∞. This is because there are 2i such

intervals, all of the same length, whose total length can never exceed 1.

• The endpoints of every interval in every Ci are in C. This is by construction.

Further, C has the following properties:

• Closed. It is de�ned as the countable intersection of closed sets.

• Perfect. Let x ∈ C and let ε > 0. Then for every Ci, x ∈ Ci
j for some j. As i → ∞,

the size of these Ci
j tends to 0, so by choosing the right endpoint xi of C

i
j , we have a

sequence {xi} such that xi → x. Thus x is a limit point of C.

• No interior points. Choose the sequence {xi} from the previous claim, and de�ne

{yi} by yi = xi + `i/2. Then yi /∈ C (it is removed in the ith step) but since `i → 0,
we still have yi → x. Thus x is not an interior point.

• Uncountability. We will derive a surjection from C to [0, 1].

Theorem 1. Let {`i} be as in De�nition 4. Then m(C) = 1−
∑∞

1 2i−1`i.

Proof. As the intervals in each Ci are disjoint, we have that

1 = m([0, 1]) =
2i∑

j=0

m(P i
j ) =

2i−1∑
j=0

m(P i
2j) +

2i−1∑
j=0

m(P i
2j+1) = m(Ci) +

i∑
j=1

2j−1`j

using �nite additivity and the de�nition of Ci and `i. Therefore, for each i ∈ N,

m(Ci) = 1−
i∑

j=1

2j−1`j

Finally, because Ci ⊃ Ci+1 for each i, by Corollary 3.3 in chapter 1 of Stein/Shakarchi,

m(C) = m

( ∞⋂
i=1

Ci

)
= lim

i→∞
m(Ci) = 1−

∞∑
j=1

2j−1`j

Remark. For the traditional Cantor set, `i = (1/3)i and this limit evaluates to 0, as

expected. But for the fat Cantor set, we get 1/2, though all the usual properties of the set

hold!
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3 The Cantor-Lebesgue Function

De�ne the following sequence {Qi}∞0 of ordered partitions of [0, 1]: let Q0 contain only

[0, 1]. Then for each i ≥ 1, construct Qi from Qi−1 by replacing each nontrivial interval

[a, b] by the intervals [
a,
a+ b

2

] [
a+ b

2
,
a+ b

2

] [
a+ b

2
, b

]
Notice that each Qi covers [0, 1] and contains exactly as many intervals as the corresponding

P i from De�nition 4.

Now, let C, {P i}∞0 be as in De�nition 4. De�ne a sequence of functions {φi}∞0 by

φi : [0, 1]→ [0, 1]

φi : x 7→ Λ
(
P i

j , Q
i
i

)
(x) x ∈ P i

j

We de�ne the Cantor-Lebesgue function:

φ : [0, 1]→ [0, 1] φ(x) = lim
n→∞

φn(x)

Theorem 2. The Cantor-Lebesgue function is continuous.

Proof. Let φ, C, {Ci}∞0 , {P i}∞0 , {Qi}∞0 and {φi}∞0 be as above.

By construction, φi is continuous for all i. We need to show that the limit is continuous.

Let n,m ∈ N, m > n. Let x ∈ [0, 1], so that x ∈ Pn
i for some i. We have two cases:

• Pn
i = (a, b). As this is an open interval, it exists unchanged in Pm, as does its image

in Qm. It follows that |φn(x)− φm(x)| = 0.

• Pn
i = [a, b]. Then afterm−n steps in the Cantor-like set construction, Pn

i =
⋃j2

j=j1
Pm

j

for some j1, j2, and φn(Pn
i ) =

⋃j2
j=j1

φm(Pm
j ). By Lemma 1, |φn(x)− φm(x)| ≤ |Pn

i |.

The size of closed |Pn
i | decreases to 0 (as there are 2n of them, each of which is the same

size, and the total length is ≤ 1) as n tends to in�nity. Therefore, for any ε > 0, we can

choose some n su�ciently large so that for all m > n,

|φn(x)− φm(x)| ≤ |Pn
i |

This is the Cauchy criterion, and we know from Math 320 that this gives us uniform

convergence to φ, and the limit of a uniformly converging sequence of continuous functions

is itself continuous.

Notice that if x /∈ C, some neighborhood of x will be mapped to a trivial interval. That

is, the �holes� in the Cantor-like set will be mapped to constant functions. As a consequence,

if C is the traditional Cantor set of measure 0, φ is a continuous increasing function with

derivative 0 almost everywhere!
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Remark. As φ(0) = 0, φ(1) = 1, the IVT gives us that φ is surjective.

Remark. The restriction of φ to C has [0, 1] as its image, since every number x not in C
has φ(x) copied from its nearest endpoints.

4 A Most Suprising Homeomorphism

Now, let C and C′ be two Cantor-like sets, and {P i}∞1 , {P ′i}∞1 the sequences of ordered

partitions used in De�nition 4 to build them. Proceeding as before, we write

Φi : [0, 1]→ [0, 1]

Φi : x 7→ Λ(P i
j , P

′i
j )(x) x ∈ P i

j

We de�ne the following function:

Φ : [0, 1]→ [0, 1] Φ(x) = lim
n→∞

φn(x)

By exactly the same proof as above, Φ is continuous. Furthermore,

Theorem 3. Φ is strictly increasing.

Proof. By Lemma 1, φi is strictly increasing for all i. As the endpoints of every interval in

every Ci are �xed by φn, n > i, it follows that φ is strictly increasing on the set of interval

endpoints in C.
Let x, y ∈ [0, 1], x < y. Then we have two cases:

1. If both x and y are in C, after some number N of iterations, the intervals in Ci, i > N ,

will have length less than y − x. Then y and x will lie in di�erent intervals. Let x1

be the right endpoint of x's interval, y1 the left endpoint of y's. We then have that

for all i > N ,

φi(x) ≤ φi(x1) = φ(x1) < φ(y1) = φi(y1) ≤ φi(y)

and by taking i→∞, φ(x) < φ(y).

2. Otherwise, at least one of x, y is not in C. Assume WLOG that x /∈ C. Then after

some number of interations N , φi(x) will be �xed for all i > N . If y /∈ C, φi(y) will

also be �xed, so we can use Lemma 1 to see that φ(x) = φi(x) < φi(y) = φ(y).

Otherwise, y ∈ C, so choose e to be an endpoint between x and y. Then after some

number of iterations, φ(e) is �xed, so φi(x) = φ(x) < φ(e) = φi(e) ≤ φi(y). Take

i→∞ to see that φ(x) < φ(y).

Remark. As a conseqeunce of the above, Φ is bijective.
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