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1 Preliminaries

Definition 1. Let Iy = [a1,b1], Io = [az, bo] be intervals that are either both closed or both
open in R, with a; # by. Then we define

A(Il,Ig) N Il — 12

bg—ag
by — a1

A, L)z (x—ay) + as

Lemma 1. Let I, Iy be intervals as above. Then A(Iy,15) is increasing. If by # as, it is

strictly increasing.

Proof. Let x1, x5 € I such that zo > 2. Then

N )0 ) = o - 2
= (22 — al)Zj :Zj — (21 — al)Zi : Zj
= (3 _-T1>lb)j:;lj >0
If by > ao, this last inequality is strict. 0

Lemma 2. Let I, I be intervals as above. Then if by # as, A(I1,I2) is invertible (in fact,
a homeomorphism). Furthermore, A=Y (I, Iy) = A(I2, I1).

Proof. We prove this directly: let « € I, y = A(I1, I2)(x). Then

- b2 — ag b1 — a o
y=(x al)bl_a1+a2:>(y a2)b2_a2+a1—x
In other words, x = A=1(I1, I5)(y) = A(I2, I1)(y). O

Definition 2. Let D be a closed interval in R. Then {D;}Y is a ordered partition of D if:
1. FEach D; is either open or closed.
2. Uf;l D; =D and for i # j, D;N D; has at most one point.
3. Fori=1,...,N — 1, the right endpoint of D; is the left endpoint of D; ;.

Lemma 3. Let D, R be closed intervals in R. Let {D;}Y, {R;}\V be ordered partitions of
D and R, with each |D;| > 0. Let A: D — R be defined as

A(z) = A(D;, R;)(x) for x € D,



be a piecewise linear function. Then A is well-defined and increasing. If all |R;| > 0, then

A is strictly increasing.

Proof. Suppose v € D; N D; for ¢ > j. Then x must be the right endpoint of D; and the
left endpoint of D;, so by Definition 1, A(D;, R;) = A(Dj, R;). So A is well-defined.
Then, by Lemma 1, A is increasing (or strictly increasing) on each interval. O

Lemma 4. Let D, R be closed intervals in R. Let {D;}, {D!}M be ordered partitions of
D such that |D;| > 0 and |D}| > 0 for all i. Let {R;}Y, {R.}M, be ordered partitions of R.
Let ' : D — R, A: D — R be defined as

A(z) = A(D;, R;)(x) N (z) = A(D}, R})(x) forx € D;

be piecewise linear functions. Then |A(x) — A'(z)| < |R| for all x € D.

Proof. By Lemma 3 we have that A and A’ are strictly increasing. Let dy,ds be the
endpoints of D, ry,ry the endpoints of R. By construction A(dy) = A'(dy) = r1 and
A(dy) = A'(d2) = r9. Thus, for any = € D,

A(dl) =T S A(SC) S To = A(dg) and A/(dl) =T S A/(.T) S Tro = A/(dg)
Assume WLOG that A’(z) < A(x). Then
Az) —N(z) <rog—AN(z) <ry—r =|R] O

Definition 3. We define a Cantor-like sequence to be a sequence {P'}$° of ordered parti-
tions of [0,1] such that P° contains the single interval [0,1], and for alli > 1, P’ is defined

from P~ by replacing each closed interval [a,b] by the three intervals

ab—f—a—ﬁi b+a—¥; b+a+/; b—i—a—i—&b
’ 2 2 ’ 2 2 ’

with ¢; > 0 chosen such that
Oy 4200+ 4l 4+ 271+ <1

Definition 4. Let {P'}¢° be a Cantor-like sequence. Define a new sequence {C?}5° by
ci=Jp; i=01,...
§=0

s0 that each C? is the union of the closed sets in P'. Then

C:ﬁQ
i=1

1s a Cantor-like set.



Remark. Choosing ¢; = 1/3% gives us the traditional “remove one-third” Cantor set.
Choosing ¢; = 1/2% gives us the Smith-Volterra—Cantor “fat Cantor” set.

2 Facts About Cantor-Like Sets

Let C be an arbitrary Cantor-like set, {C?} and {P’} as in Definition 4. We notice:

o The size of the intervals in C? tend to 0 as i — oo. This is because there are 2¢ such
intervals, all of the same length, whose total length can never exceed 1.

o The endpoints of every interval in every C? are in C. This is by construction.
Further, C has the following properties:
e (losed. It is defined as the countable intersection of closed sets.

e Perfect. Let € C and let € > 0. Then for every C?, x € C’JZ: for some j. As i — oo,
the size of these C’;ﬁ tends to 0, so by choosing the right endpoint x; of C’]i-, we have a
sequence {z;} such that z; — 2. Thus « is a limit point of C.

e No interior points. Choose the sequence {x;} from the previous claim, and define
{yi} by yi = x; + ¢;/2. Then y; ¢ C (it is removed in the ith step) but since ¢; — 0,

we still have y; — x. Thus z is not an interior point.
o Uncountability. We will derive a surjection from C to [0, 1].
Theorem 1. Let {(;} be as in Definition 4. Then m(C) =1 — > 7 2"1¢,.

Proof. As the intervals in each C* are disjoint, we have that

2! 9i—1 9i—1 ;
L=m(01) =3 m(Ff) =3 m(Py) + 3 m(Phy) =m(C) +3 271
3=0 3=0 3=0 j=1

using finite additivity and the definition of C* and ¢;. Therefore, for each i € N,
m(C”) =1- Z 2j—1€j
j=1
Finally, because C* D C**! for each i, by Corollary 3.3 in chapter 1 of Stein/Shakarchi,

m(C) =m (ﬂ C”) = lm m(C) = 1= Y2771,
i=1

j=1
O
Remark. For the traditional Cantor set, ¢; = (1/3) and this limit evaluates to 0, as

expected. But for the fat Cantor set, we get 1/2, though all the usual properties of the set
hold!



3 The Cantor-Lebesgue Function

Define the following sequence {Q‘}$° of ordered partitions of [0,1]: let Q° contain only
[0,1]. Then for each i > 1, construct Q' from Q*~! by replacing each nontrivial interval

[a, b] by the intervals

a+b a+b a+b a—l—bb
“ 2 "9 9

Notice that each Q covers [0, 1] and contains exactly as many intervals as the corresponding
P? from Definition 4.
Now, let C, {P*}&° be as in Definition 4. Define a sequence of functions {¢;}$° by

d)i : [Oal] - [07 ”
¢i:x»—>A(Fj,Q§) () x€P

We define the Cantor-Lebesgque function:

¢ [07 1] - [07 1] ¢(l‘) = lim (bn('r)

n—oo
Theorem 2. The Cantor-Lebesgue function is continuous.

Proof. Let ¢, C, {C*}, {P}°, {Q}° and {¢'}§° be as above.
By construction, ¢; is continuous for all 7. We need to show that the limit is continuous.
Let n,m € N, m > n. Let x € [0, 1], so that € P* for some i. We have two cases:

e P = (a,b). As this is an open interval, it exists unchanged in P™, as does its image

in Qm It follows that |¢n($) - ¢77z(z)| = 0.

e P! =[a,b]. Then after m—n steps in the Cantor-like set construction, P;* = ;:2:].1 P
for some j1, j2, and ¢, (P]*) = §2=j1 ¢m (P]"). By Lemma 1, [¢n(z) — ¢ ()| < |P]'].

The size of closed |P}*| decreases to 0 (as there are 2" of them, each of which is the same
size, and the total length is < 1) as n tends to infinity. Therefore, for any € > 0, we can

choose some n sufficiently large so that for all m > n,
[P (x) = dm ()] < [P

This is the Cauchy criterion, and we know from Math 320 that this gives us uniform
convergence to ¢, and the limit of a uniformly converging sequence of continuous functions

is itself continuous. O

Notice that if = ¢ C, some neighborhood of = will be mapped to a trivial interval. That
is, the “holes” in the Cantor-like set will be mapped to constant functions. As a consequence,
if C is the traditional Cantor set of measure 0, ¢ is a continuous increasing function with

derivative 0 almost everywhere!



Remark. As ¢(0) =0, ¢(1) =1, the IVT gives us that ¢ is surjective.

Remark. The restriction of ¢ to C has [0,1] as its image, since every number z not in C
has ¢(x) copied from its nearest endpoints.

4 A Most Suprising Homeomorphism

Now, let C and C’ be two Cantor-like sets, and {P*}5°, {P*}$° the sequences of ordered
partitions used in Definition 4 to build them. Proceeding as before, we write

®, : [0,1] — [0,1]
D;:x— A(P;,Pj{i)(x) S P;

We define the following function:

®:[0,1] = [0,1] ®(z) = lim ¢,(x)

n—oo
By exactly the same proof as above, ® is continuous. Furthermore,
Theorem 3. ® is strictly increasing.

Proof. By Lemma, 1, ¢; is strictly increasing for all i. As the endpoints of every interval in
every O are fixed by ¢, n > i, it follows that ¢ is strictly increasing on the set of interval
endpoints in C.

Let z,y € [0,1], * < y. Then we have two cases:

1. If both = and y are in C, after some number N of iterations, the intervals in C?, i > N,
will have length less than y — x. Then y and x will lie in different intervals. Let x;
be the right endpoint of x’s interval, y; the left endpoint of y’s. We then have that
forall i > N,

¢i(z) < di(w1) = ¢(x1) < O(y1) = di(y1) < ¢i(y)
and by taking i — oo, ¢(x) < ¢(y).
2. Otherwise, at least one of z,y is not in C. Assume WLOG that = ¢ C. Then after

some number of interations N, ¢;(x) will be fixed for all i > N. If y ¢ C, ¢;(y) will
also be fixed, so we can use Lemma 1 to see that ¢(x) = ¢;(z) < ¢;(y) = ¢(y).

Otherwise, y € C, so choose e to be an endpoint between x and y. Then after some
number of iterations, ¢(e) is fixed, so ¢;(x) = ¢(x) < ¢(e) = ¢i(e) < ¢;(y). Take
i — oo to see that ¢(z) < &(y).

Remark. As a conseqeunce of the above, ® is bijective.



