Diversities and Conformities: Generalizing Andrew Poelstra Uniform Convergence 2012 November 19

1 Definition

Definition 1. Let (X, δ) be a diversity, $\{x_n\}$ a sequence of elements of X. We say that $\{x_n\}$ converges to a limit x if

$$\lim_{N \to \infty} \sup_{i_1, \dots, i_n \ge N} \delta(\{x, x_{i_1}, \dots, x_{i_n}\}) = 0$$

Definition 2. Let (X, δ) be a diversity, $\{x_n\}$ a sequence of elements of X. We say that $\{x_n\}$ is a *Cauchy sequence* if

$$\lim_{N \to \infty} \sup_{i_1, \dots, i_n \ge N} \delta(\{x_{i_1}, \dots, x_{i_n}\}) = 0$$

Definition 3. We call a diversity *complete* if every Cauchy sequence converges. **Sanity Check 1.** Every convergent sequence is Cauchy.

Proof. Monotonicity.

2 Metrics and Diversities

Theorem 1. Let (X, δ) be a diversity, d its induced metric. If (X, d) is a complete metric space, then (X, δ) is a complete diversity.

Proof. Suppose that (X, d) is complete. Let $\{x_n\}$ be a Cauchy sequence in (X, δ) . Then it is also Cauchy in (X, d), and therefore converges to some element x. We claim that $x_n \to x$ in (X, δ) . To this end, let $\epsilon > 0$. Then there exists N such that:

- $d(x_n, x) < \epsilon$ for all n > N (since $x_n \to x$ in (X, d))
- $\delta(\{x_{n_1}, x_{n_2}, \dots, x_{n_m}\}) < \epsilon$ for all $n_i > N$ (since $\{x_n\}$ is Cauchy in (X, δ) .

Therefore, for all $n_1, \ldots, n_m > N$,

$$\begin{split} \delta(\{x, x_{n_1}, \dots, x_{n_m}\}) &\leq \delta(\{x, x_{n_1}\}) + \delta(\{x_{n_1}, \dots, x_{n_m}\}) \\ &= d(x, x_{n_1}) + \delta(\{x_{n_1}, \dots, x_{n_m}\}) < 2\epsilon \end{split}$$

i.e., $x_n \to x$ in (X, δ) .

Lemma 1. Let (X, d) be a metric space, $\{x_n\}$ a Cauchy sequence in X. If there exists some subsequence $\{x_{i_n}\}$ such that $x_{i_n} \to x$, then $x_n \to x$.

Proof. Let $\epsilon > 0$. Then $d(x_n, x) \leq d(x_n, x_{i_m}) + d(x_{i_m}, x) < 2\epsilon$ for m, n large enough. \Box

Lemma 2. Let (X, δ) be a diversity, d its induced metric. Let $\{x_n\}$ be Cauchy in (X, d). Then it has a subsequence that is Cauchy in (X, δ) .

Proof. Define the subsequence $\{x_{n_i}\}$ by

$$n_i = \min\{n : d(x_n, x_m) < 2^{-i} \text{ for all } m \ge n\}$$

Then given $\epsilon > 0$, choose N such that $2^{1-N} < \epsilon$. Then for all $i_1 \leq i_2 \leq \cdots \leq i_m$ greater than N,

$$\delta(\{x_{i_1}, \dots, x_{i_m}\}) \le \delta(\{x_{i_1}, x_{i_2}\}) + \dots + \delta(\{x_{i_{m-1}}, x_{i_m}\})$$

$$< 1/2^{i_1} + \dots + 1/2^{i_m}$$

$$< \sum_{i=N}^{\infty} 1/2^i$$

$$= 2^{1-N} < \epsilon$$

That is, $\{x_{n_i}\}$ is Cauchy in (X, δ) .

Theorem 2. Let (X, δ) be a diversity, d its induced metric. If (X, δ) is a complete diversity, then (X, d) is a complete metric space.

Proof. Let $\{x_n\}$ be a Cauchy sequence in (X, d). Then by Lemma 2 it has a subsequence that is Cauchy in (X, δ) , which converges to some element x since the diversity is complete. (It converges in both (X, δ) and (X, d).)

Then by Lemma 1, $x_n \to x$ in the metric; i.e., $\{x_n\}$ converges.

Putting these two theorems together, we get

Corollary 1. A diversity (X, δ) is complete iff its induced metric is complete.

However, we do not have equivalence of Cauchiness, as we will see.

Theorem 3. There exists a diversity (X, δ, d) , and a sequence $\{x_n\}$ in X, which is Cauchy in (X, d) but not in (X, δ) .

Proof. Let (X, δ) be the Steiner tree diversity on \mathbb{R}^2 . Define the sets $S_i, i \geq 2$ by

$$S_i = \left\{ \left(\frac{n+1/2}{i^2}, \frac{m+1/2}{i^2}\right) : 0 \le n \le i, 0 \le m \le i \right\}$$

That is, we have a sequence of $i \times i$ lattices on the square $[0, 1/i] \times [0, 1/i]$, and the points in S_i are the midpoints.

Order the points in each S_i somehow, and define the sequence

$$\{x_n\} = S_2 S_3 S_4 \cdots$$

Then $\{x_n\}$ is Cauchy in (X, d), since eventually every pair of points is confined to the square $[0, \epsilon] \times [0, \epsilon]$. However, it is not Cauchy in (X, δ) , for the following reason:

Consider a minimum spanning tree connecting all the points of some S_i . Since there are i^2 points in S_i , we must have at least $i^2 - 1$ edges. Each edge must have length $\geq 1/i^2$, since that is the minimum spacing between points of S_i . So the total length of the edges is

$$\frac{1}{i^2} \cdot (i^2 - 1) = 1 - \frac{1}{i^2} \ge \frac{3}{4}$$

for every $i \ge 2$. Thus for any N > 0,

$$\sup_{i_1, \dots, i_n \ge N} \delta(\{x_{i_1}, \dots, x_{i_n}\}) \ge \frac{3}{4}C$$

where C is a constant comparing the length of a minimum spanning tree to that of a minimum Steiner tree, in the plane.

3 Completion

Theorem 4. Every diversity (X, d) can be embedded in a complete diversity.

Proof. Let \hat{X} be the set of all Cauchy sequences in X. Identify any two sequences $\{x_i\}, \{y_i\}$ which satisfy $\lim_{n\to\infty} \delta(\{x_n, y_n\}) = 0$ (so \hat{X} is actually a set of equivalence classes). Define the function $\hat{\delta}$ from $\mathcal{P}_{\text{fin}}(\hat{X}) \to \mathbb{R}$ by

$$\hat{\delta}(\{\{x_i^1\}, \{x_i^2\}, \dots, \{x_i^n\}\}) = \lim_{N \to \infty} \sup_{i_1, \dots, i_n \ge N} \delta(\{x_{i_1}^1, x_{i_2}^2, \dots, x_{i_n}^n\})$$

It can then be shown that $(\hat{X}, \hat{\delta})$ is a complete diversity, and that (X, δ) can be embedded isodiversically in it by $x \mapsto \{x, x, x, \ldots\}$. The proof is straightforward but tedious.

4 Some Examples

Example 1. Let (X, d) be a complete metric space, (X, δ) its diameter diversity. Then (X, δ) is complete.

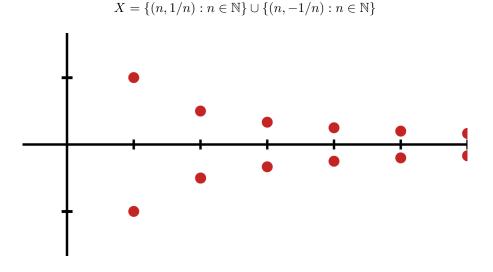
Example 2. The Steiner tree diversity on \mathbb{R}^2 is complete. (Its induced metric is the Euclidean one, which is complete.)

Example 3. Where diversities behave very differently from their induced metric, the reason is that we can find sets A such that $\delta(A)$ is very large, while $\delta(\{a,b\})$ is small for any $a, b \in A$. We might ask how extreme this effect can be.

Specifically, does a diversity (X, δ) exist such that?:

- For all $\epsilon > 0$, there exists $x, y \in X$ such that $\delta(\{x, y\}) < \epsilon$.
- There exists some constant C such that for all $Z \subset X$, $\delta(Z) \ge C|Z|$.

Yes. Consider the euclidean diameter diversity on the set



For any $\epsilon > 0$, we can find $n > \frac{1}{2\epsilon}$, and the points (n, 1/n) and (n, -1/n) will be within ϵ of each other. However, it is clear that any finite set A will have diameter $\geq |A|/2$.

However, this pathology will not affect our results on convergence, since no such diversity can have a limit point (defined as a point x, with a sequence $\{x_n\}$ such that $x_i \neq x$ for all *i*, but $x_n \to x$). The reason is simple: for a sequence $\{x_n\}$ to converge in this diversity, it would have to be eventually constant. So " $x_i \neq x$ for every *i*" is incompatible with " $x_n \to x$ ".

5 Fixed Points

Definition 4. Let (X, δ) be a diversity, $T: X \to X$ a function such that

$$\delta(T(A)) \le k\delta(A)$$

for all finite $A \subset X$, some $k \in (0,1)$. We call T a contraction mapping with Lipschitz constant k.

Theorem 5. Let (X, δ) be a complete diversity, $T : X \to X$ a contraction mapping with Lipschitz constant k. Then there exists a unique point $x_0 \in X$ such that $T^n(x) \to x_0$ as $n \to \infty$, for all $x \in X$.

Proof. Let $N \in \mathbb{N}$. Then for all $i_1, i_2, \ldots, i_n > N$,

$$\begin{split} \delta(\{T^{N+i_1}(x), T^{N+i_2}(x), \dots, T^{N+i_n}(x)\}) \\ &\leq \delta(\{T^{N+i_1}(x), T^{N+i_2}(x)\}) + \dots + \delta(\{T^{N+i_{n-1}}(x), T^{N+i_n}(x)\}) \\ &\leq (k^{N+i_1} + k^{N+i_2} + \dots + k^{N+i_n})\delta(\{x, T(x)\}) \\ &\leq \frac{k^N}{1-k}\delta(\{x, T(x)\}) \end{split}$$

So by taking N large enough, we can force $\delta(\{T^{N+i_1}(x), \ldots, T^{N+i_n}(x)\})$ as small as we like, and the sequence is Cauchy. Then since (X, δ) is complete, it converges to some fixed point x_0 .

As for uniqueness, let y_0 be another fixed point. Then

$$\delta(\{x_0, y_0\}) = \delta(\{T(x_0), T(y_0)\}) \le k\delta(\{x_0, y_0\})$$

So $\delta(\{x_0, y_0\}) = 0.$

6 Uniform Spaces and Conformities

Definition 5. Let X be a set, \mathcal{F} a collection of subsets of $\mathcal{P}(X)$. We call \mathcal{F} a *filter* if

- Whenever $X, Y \in \mathcal{F}$, so is $X \cap Y$.
- Whenever $X \in \mathcal{F}, Z \supseteq X, Z \in \mathcal{F}$.

If $\emptyset \notin \mathcal{F}$, we call \mathcal{F} a proper filter.

Definition 6. Let X be a set, \mathcal{F} a collection of subsets of $\mathcal{P}(X)$. We call \mathcal{F} a *filter base* if \mathcal{F} becomes a filter by adding supersets of its elements.

Definition 7. Let X be a set, \mathcal{U} be a collection of subsets of $\mathcal{P}_{fin}(X)$. We call \mathcal{U} a *conformity* if

- \mathcal{U} is a filter on $\mathcal{P}_{fin}(X)$.
- For all $U \in \mathcal{U}$, all $x \in X$, $\{x\} \in U$.
- If $a \in U$, $b \subseteq a$, then $b \in U$.
- For all $U \in \mathcal{U}$, there exists $V \in \mathcal{U}$ such that

$$V \circ V := \{ u \cup v : u, v \in V \text{ and } u \cap v \neq \emptyset \} \subseteq U$$

The pair (X, \mathcal{U}) is called a *uniform space*.

This definition corresponds to that of a *uniformity* from metric space theory. The name *conformity* comes from the question, "how does one make a uniformity from a diversity?". **Definition 8.** By a *base* for a conformity, we mean a filter base.

Note. Composition, as defined above, is commutative, so that $V \circ V \circ V$ is unambiguous. Lemma 3. Let (X, \mathcal{U}) be a conformity. Then for any $U \in \mathcal{U}$, $n \in \mathbb{N}$, there exists $V \in \mathcal{U}$ such that

$$V \circ V \circ V \subseteq U$$

Proof. Choose V' so that $V' \circ V' \subseteq U$, then V such that $V \circ V \subseteq V'$. Then

$$V \circ V \circ V \subseteq (V \circ V) \circ (V \circ V) = V' \circ V' \subseteq U$$

There is a natural way to create conformities from diversities; let (X, δ) be a diversity. Then let

$$\mathcal{U}_{\text{base}} = \{ \{ x \subset X : |x| < \infty \text{ and } \delta(X) < \epsilon \} : \epsilon > 0 \}$$

It is then easily verified that

$$\mathcal{U} = \{ U : \exists V \in \mathcal{U}_{\text{base}} \text{ such that } V \subseteq U \}$$

is a diversity. (The last axiom is satisfied by the triangle inequality.)

We can also create conformities from multiple diversities; the generated filter is guaranteed to be proper since every base element contains the diagonal. (So every pair of base elements will have a nonempty intersection.)

6.1 Uniform Continuity

Definition 9. Let (X, δ_X) , (Y, δ_Y) be diversities, $f : X \to Y$. We say f is continuous at a point x if for all $\epsilon > 0$, there exists some d = d(x) > 0 such that whenever $x \in A$, $\delta_X(A) < d$, then $\delta_Y(f(A)) < \epsilon$.

If f is continuous at every point $x \in \Omega$, we say f is continuous on Ω .

Definition 10. We say f is uniformly continuous if for all $\epsilon > 0$, there exists d > 0 such that $\delta_X(A) < d \implies \delta_Y(f(A)) < \epsilon$.

Sanity Check 2. Every uniformly continuous function is continuous.

Theorem 6. Let (X, δ_X) , (Y, δ_Y) be diversities, \mathcal{U}_X and \mathcal{U}_Y their conformities. Let $f : X \to Y$. Then f is uniformly continuous iff for all $U \in \mathcal{U}_Y$, $\{f^{-1}(u) : u \in U\} \in \mathcal{U}_X$.

This theorem lets us define uniform continuity purely in terms of conformities, without reference to any underlying diversity.

6.2 Diversification

Lemma 4. Let (X, \mathcal{U}) have a countable base. Then it has a countable base $\{U_n\}$ satisfying $U_0 = \mathcal{P}_{fin}(X), U_i \circ U_i \circ U_i \subseteq U_{i-1}$ for all *i*.

Proof. Let $\{V_n\}$ be a countable base for \mathcal{U} . Define $W_0 = \mathcal{P}_{\text{fin}}(X)$, $W_n = V_n \cap W_{n-1}$. Then $\{W_n\}$ is a nested countable base. Finally, choose $\{U_n\}$ as $U_i = W_{n_i}$, where n_i are chosen inductively as $n_0 = 0$, then $W_{n_i} \circ W_{n_i} \circ W_{n_i} \subseteq W_{n_{i-1}}$. (See Lemma 3.)

Theorem 7. Let (X, \mathcal{U}) be a conformity, $\{U_n\}$ a sequence in \mathcal{U} satisfying $U_0 = \mathcal{P}_{fin}(X)$, $U_i \circ U_i \circ U_i \subseteq U_{i-1}$ for all i > 0. Let \mathcal{V} be the conformity generated by these sets.

Then there exists a pseudodiversity δ on X which generates \mathcal{V} .

Proof. We define δ' on \mathcal{P}_{fin} as follows:

$$\delta'(A) = \begin{cases} 0 & A \in U_n \text{ for all } n\\ 2^{-k} & A \in U_n \text{ for } 0 \le n \le k, \text{ but } A \notin U_{k+1} \end{cases}$$

Notice that for $k \ge 0$,

$$\delta'^{-1}([0,2^{-k}]) = U_k \tag{1}$$

Also note that δ' is monotonic, since if $A \subseteq B$, then A has to be in every U_k that B is. (This is an axiom for \mathcal{U} .)

Now, define a **chain** as a finite sequence $\{A_i\}_1^n$ with $A_i \cap A_{i+1} \neq \emptyset$ for $i = 1, \ldots, (n-1)$. Define a **cycle** to be a chain such that $A_1 \cap A_n \neq \emptyset$.

Next, define

$$\bar{\delta}(A) = \inf_{\text{chains covering } A} \sum_{i=1}^{n} \delta'(A_i)$$
(2)

$$\delta(A) = \inf_{\text{cycles covering } A} \sum_{i=1}^{n} \delta'(A_i)$$
(3)

Also, let $\delta(\emptyset) = \overline{\delta}(\emptyset) = 0$.

There are three stages to our proof:

1. First, we show that δ is a pseudodiversity. We notice that for any singleton $\{x\}$, $\{x\}$ is in every member of \mathcal{U} , so that $\delta'(\{x\}) = 0$. Then since $\{x\}$ forms a single-element chain covering itself, $\delta(\{x\}) = 0$.

Also, the triangle equality holds: let $\epsilon > 0$, $A, C \in \mathcal{P}_{fin}(X)$ and $B \in \mathcal{P}_{fin}(X)$ be nonempty. Choose cycles $\{A_i\}_1^n$ and $\{B_i\}_1^m$ which cover $A \cup B$ and $B \cup C$, respectively, and for which

$$\sum_{i=1}^{n} \delta'(A_i) \le \delta(A \cup B) + \epsilon \qquad \text{and} \qquad \sum_{i=1}^{m} \delta'(B_i) \le \delta(B \cup C) + \epsilon$$

Then $\{A_i\}_1^n \cup \{B_i\}_1^m$ forms a cycle (after reordering) which covers $A \cup C$, so that

$$\delta(A \cup C) \le \sum_{i=1}^{n} \delta'(A_i) + \sum_{i=1}^{m} \delta'(B_i) \le \delta(A \cup B) + \delta(B \cup C) + 2\epsilon$$

That ϵ is arbitrary gives the result.

2. Next, we claim that

$$\delta \le \bar{\delta} \le 2\delta \tag{4}$$

This follows easily since

- Every cycle is a chain, so $\delta \leq \overline{\delta}$.
- If {A₁,..., A_{n-1}, A_n} is a chain, then {A₁,..., A_{n-1}, A_n, A_{n-1},..., A₁} is a cycle and the sum of δ' over this cycle is less than twice the sum of δ' over the

original chain. It follows that $\bar{\delta} \leq 2\delta$.

3. Finally, we claim that $\bar{\delta}$ satisfies

$$\frac{1}{2}\delta' \leq \bar{\delta} \leq \delta'$$

which will give us that

$$\delta'^{-1}([0,x]) \subseteq \bar{\delta}^{-1}([0,x]) \subseteq \delta'^{-1}([0,2x])$$
(5)

Putting (1) and (5) together gives us

$$U_k = \delta'^{-1}([0, 2^{-k}]) \subseteq \bar{\delta}^{-1}([0, x]) \subseteq \delta'^{-1}([0, 2^{-K}]) = U_K$$

for $2^{-k} < x < 2^{-K-1}$. Thus $\bar{\delta}^{-1}([0,x])$ is a base for \mathcal{U} , and by (4), so is $\delta^{-1}([0,x])$.

In other words, δ generates \mathcal{V} .

To prove this last step, we first note that $\bar{\delta} \leq \delta'$ trivially. To show $\bar{\delta} \geq \delta'/2$, choose $A \in \mathcal{P}_{\text{fin}}(X)$. Our strategy is to induct on the greatest integer N such that $\bar{\delta}(A) < 2^{-N}$. The case N = 0 is trivial, since $\delta' \leq 1$, so $\bar{\delta}(A) > 1/2 \geq \delta'(A)/2$. (For the same reason, the case $\bar{\delta}(A) = 1$, which is not covered by the induction, is trivial.)

For N > 0, choose $\epsilon \in (0, 2^{-N} - \overline{\delta}(A))$ and a chain $\{A_i\}_1^n$ such that

$$\sum_{i=1}^{n} \delta'(A_i) = \bar{\delta}(A) + \epsilon < 2^{-N}$$
(6)

If n = 1, our sum is simply $\delta'(A_1)$, so we have

$$\delta'(A) \le \delta'(A_1) < 2^{-N} < 2\bar{\delta}(A)$$

Otherwise, there is k < n such that

$$\sum_{i=1}^{k-1} \delta'(A_i) \le \frac{\overline{\delta}(A)}{2} \text{ and } \sum_{i=k+1}^n \delta'(A_i) \le \frac{\overline{\delta}(A)}{2}$$

$$\tag{7}$$

Since $\{A_i\}_1^{k-1}$ and $\{A_i\}_{k+1}^n$ are chains whose sum under δ' is less than half that of $\{A_i\}_1^n$, the inductive hypothesis applies to them and we may write

$$\delta'(A_1 \cup \dots \cup A_{k-1}) \le 2\bar{\delta}(A_1 \cup \dots \cup A_{k-1}) \qquad \text{inductive hypothesis}$$
$$\le 2\sum_{i=1}^{k-1} \delta'(A_i) \qquad \qquad \text{definition of } \bar{\delta}$$
$$\le \bar{\delta}(A) \qquad \qquad \text{by (7)}$$
$$< 2^{-N}$$

An identical argument gives that $\delta'(A_{k+1} \cup \cdots \cup A_n) < 2^{-N}$, and $\delta'(A_k) < 2^{-N}$ by (6). So

$$(A_1 \cup \cdots \cup A_{k-1}) \in U_{N+1}$$
 and $A_k \in U_{N+1}$ and $(A_{k+1} \cup \cdots \cup A_n) \in U_{N+1}$

Our double-composition hypothesis gives

$$(A_1 \cup \dots \cup A_{k-1}) \cup A_k \cup (A_{k+1} \cup \dots \cup A_n) \in U_N$$

And we are done!:

$$\delta'(A) \le \delta'(A_1 \cup \dots \cup A_n) \le 2^{-N} \le 2\bar{\delta}(A)$$

Corollary 2. If (X, \mathcal{U}) has a countable base, then there exists a pseudodiversity δ which generates \mathcal{U} .

The converse of the above theorem is trivially true.

7 Power Conformities

Definition 11. Let (X, \mathcal{U}) be a conformity. We define the *power conformity* \mathcal{U}^P as the conformity on $\mathcal{P}_{fin}(X)$ generated by sets of the form

$$U_u = \left\{ \{A_1, \dots, A_n\} : A_i \not\subseteq A_j, \{a_1, \dots, a_m\} \in u, a_i \in \bigcup_{i=1}^n A_i \setminus \bigcap_{i=1}^n A_i \right\}$$
(8)

for all $u \in \mathcal{U}$.

Our first order of business is to show that diversities are uniformly continuous from their own power conformity to \mathbb{R} :

Theorem 8. Let (X, \mathcal{U}) be a conformity. A psuedodiversity δ is uniformly continuous from the power conformity \mathcal{U}^P to $(\mathbb{R}, \text{diam})$ iff the sets $V_{\epsilon} = \{A : \delta(A) < \epsilon\}$ are in \mathcal{U} for every $\epsilon > 0$.

Proof. First, suppose that every V_{ϵ} is in \mathcal{U} . For each $\epsilon > 0$, the set

$$U_{\epsilon} = \left\{ \{A_1, \dots, A_n\} : A_i \not\subseteq A_j, \delta(\{a_1, \dots, a_m\}) < \epsilon, a_i \in \bigcup_{i=1}^n A_i \setminus \bigcap_{i=1}^n A_i \right\}$$

is in \mathcal{U}^P . (Notice it has the form of (8). with $u = V_{\epsilon}$.) Then for each $\{A, B\} \in U_{\epsilon}$, we have that $\delta(A \Delta B) < \epsilon$. Since $B \not\subseteq A$, $(B \setminus A) \neq \emptyset$ and we have

$$\begin{split} \delta(A) &= \delta((A \setminus B) \cup (A \cap B)) \\ &\leq \delta\left((A \setminus B) \cup (B \setminus A)\right) + \delta\left((B \setminus A) \cup (A \cap B)\right) \\ &= \delta(A \Delta B) + \delta(B) \\ &< \delta(B) + \epsilon \end{split}$$

Therefore $\delta(A) - \delta(B) < \epsilon$, which shows that δ is uniformly continuous.

Conversely, suppose δ is uniformly continuous. Then for every $\epsilon > 0$, there exists some $u \in \mathcal{U}$ such that every $\{A_1, \ldots, A_n\} \in U_u$ satisfies $\sup_{i,j} |\delta(A_i) - \delta(A_j)| < \epsilon$. In particular, for all $A \neq X \in u$, we can find $x \in X$, $x \notin A$, so the set $\{A, \{x\}\}$ is in U_u , which implies $|\delta(A)| < \epsilon$; i.e., $u \subseteq V_{\epsilon}$.

(If $X \in u$, then (a) X is a singleton and $\delta(X) = 0 < \epsilon$, or (b) there exist two overlapping sets Y and Z such that $Y \cup Z = X$; then by the triangle inequality $\delta(X) < 2\epsilon$. (So if $\delta(X) > 0$, we can choose a small enough ϵ to avoid this technicality entirely.))

So we have V_{ϵ} or $V_{2\epsilon}$ in \mathcal{U} , which is the result.

This gives us the main result of this section:

Corollary 3. Every conformity (X, \mathcal{U}) is generated by the set of all pseudodiversities which are uniformly continuous from \mathcal{U} to the diameter diversity on \mathbb{R} .

Proof. Let \mathcal{V} be the conformity generated by all uniformly continuous pseudodiversities. The previous result implies that every set in \mathcal{V} is also in \mathcal{U} ; the diversification result of the last article implies that every set in \mathcal{U} is also in \mathcal{V} .