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Van der Waerden’s Theorem in Two Parts

S(`, m) =⇒ S(`, m + 1)

We proceed by induction on m. Fix ` and m, and suppose that
S(`, j) holds for each j = 1, . . . ,m. Fix r ∈ N.

Then both M = N(`,m, r) and M ′ = N(`, 1, rM) exist.

Let χ be an r -coloring of the interval [1,MM ′].

Define χ : [1,M ′]→ [1, rM ] as follows:

χ(k1) = χ(k2)⇔ χ(k1M − i) = χ(k2M − i),

for each i ∈ [0,M − 1].
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Van der Waerden’s Theorem in Two Parts

Let us pause here and demonstrate this construction of χ.

Consider the following 2-coloring χ of [1, 32].

Then the coloring χ is constructed as:
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Van der Waerden’s Theorem in Two Parts

So let us continue with the proof.

As M ′ = N(`, 1, rM), we may find a′, d ′ ∈ N such that
χ(a′ + xd ′) is constant on X0 = [0, `− 1].

This gives a sequence, I0, . . . , I`−1, of ` sub-intervals of length
M in [1,MM ′] each of which is colored the same under χ.

Each sub-interval is of the form
Ix := [M(a′ + x − 1) + 1,M(a′ + x)], with x ∈ X0.

Consider I0. By the induction hypothesis, there exist
a, d2, . . . , dm+1 ∈ N such that

a +
m+1∑
i=2

xidi ∈ I0, χ

(
a +

m+1∑
i=2

xidi

)
≡ const

11 / 56



Van der Waerden’s Theorem in Two Parts

So let us continue with the proof.

As M ′ = N(`, 1, rM), we may find a′, d ′ ∈ N such that
χ(a′ + xd ′) is constant on X0 = [0, `− 1].

This gives a sequence, I0, . . . , I`−1, of ` sub-intervals of length
M in [1,MM ′] each of which is colored the same under χ.

Each sub-interval is of the form
Ix := [M(a′ + x − 1) + 1,M(a′ + x)], with x ∈ X0.

Consider I0. By the induction hypothesis, there exist
a, d2, . . . , dm+1 ∈ N such that

a +
m+1∑
i=2

xidi ∈ I0, χ

(
a +

m+1∑
i=2

xidi

)
≡ const

12 / 56



Van der Waerden’s Theorem in Two Parts

So let us continue with the proof.

As M ′ = N(`, 1, rM), we may find a′, d ′ ∈ N such that
χ(a′ + xd ′) is constant on X0 = [0, `− 1].

This gives a sequence, I0, . . . , I`−1, of ` sub-intervals of length
M in [1,MM ′] each of which is colored the same under χ.

Each sub-interval is of the form
Ix := [M(a′ + x − 1) + 1,M(a′ + x)], with x ∈ X0.

Consider I0. By the induction hypothesis, there exist
a, d2, . . . , dm+1 ∈ N such that

a +
m+1∑
i=2

xidi ∈ I0, χ

(
a +

m+1∑
i=2

xidi

)
≡ const

13 / 56



Van der Waerden’s Theorem in Two Parts

So let us continue with the proof.

As M ′ = N(`, 1, rM), we may find a′, d ′ ∈ N such that
χ(a′ + xd ′) is constant on X0 = [0, `− 1].

This gives a sequence, I0, . . . , I`−1, of ` sub-intervals of length
M in [1,MM ′] each of which is colored the same under χ.

Each sub-interval is of the form
Ix := [M(a′ + x − 1) + 1,M(a′ + x)], with x ∈ X0.

Consider I0. By the induction hypothesis, there exist
a, d2, . . . , dm+1 ∈ N such that

a +
m+1∑
i=2

xidi ∈ I0, χ

(
a +

m+1∑
i=2

xidi

)
≡ const

14 / 56



Van der Waerden’s Theorem in Two Parts

So let us continue with the proof.

As M ′ = N(`, 1, rM), we may find a′, d ′ ∈ N such that
χ(a′ + xd ′) is constant on X0 = [0, `− 1].

This gives a sequence, I0, . . . , I`−1, of ` sub-intervals of length
M in [1,MM ′] each of which is colored the same under χ.

Each sub-interval is of the form
Ix := [M(a′ + x − 1) + 1,M(a′ + x)], with x ∈ X0.

Consider I0. By the induction hypothesis, there exist
a, d2, . . . , dm+1 ∈ N such that

a +
m+1∑
i=2

xidi ∈ I0, χ

(
a +

m+1∑
i=2

xidi

)
≡ const

15 / 56



Van der Waerden’s Theorem in Two Parts

Let d1 = d ′M.

Consider the sets Xj ⊂ [0, `]m+1, with j ∈ [0,m + 1].

For each (x1, . . . , xm+1) ∈ Xj , consider

χ

(
a +

m+1∑
i=1

xidi

)

We will consider two cases: when x = `, and when x < `.
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Van der Waerden’s Theorem in Two Parts

CASE I: If x1 ∈ [0, `− 1], then a +
∑m+1

i=1 xidi ∈ Ix1 , by the
definition of Ix1 .

This gives,

χ

(
a +

m+1∑
i=1

xidi

)
= χ

(
a +

m+1∑
i=2

xidi

)
,

and so χ is constant on each Xj ⊂ [0, `]m+1, with j ∈ [0,m + 1].
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Van der Waerden’s Theorem in Two Parts

CASE II: If x1 = `, we must also have x2 = x3 = · · · = xm+1 = `.

Thus the only elements we need to worry about come from
Xm+1 = {(`, . . . , `)}.
It is clear that χ must take a unique value on Xm+1, from
which the result follows.

22 / 56



Van der Waerden’s Theorem in Two Parts

CASE II: If x1 = `, we must also have x2 = x3 = · · · = xm+1 = `.

Thus the only elements we need to worry about come from
Xm+1 = {(`, . . . , `)}.

It is clear that χ must take a unique value on Xm+1, from
which the result follows.

23 / 56



Van der Waerden’s Theorem in Two Parts

CASE II: If x1 = `, we must also have x2 = x3 = · · · = xm+1 = `.

Thus the only elements we need to worry about come from
Xm+1 = {(`, . . . , `)}.
It is clear that χ must take a unique value on Xm+1, from
which the result follows.

24 / 56



Van der Waerden’s Theorem in Two Parts

From S(l , m) to S(l + 1, 1)

Now, we show that if statement S(l ,m) is true for some l ,
and all values of m, then statement S(l + 1, 1) holds.

In this way, we increase the maximum length of arithmetic
progressions that are guaranteed to exist for an r -coloring of
the natural numbers.
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Van der Waerden’s Theorem in Two Parts

Some Variables

So, let’s get started:

By hypothesis, the number N(l ,m, r) exists for some l , all
m ≥ 1, and all r ≥ 1.

So, choose some r , let N = N(l , r , r), and let χ be an
r -coloring of [1,N].

Then there exist numbers a, d1, . . . , dr such that

χ(a + x1d1 + x2d2 + · · ·+ xrdr )

is constant on each l-equivalence class Xi .
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Van der Waerden’s Theorem in Two Parts

For each i = 1, 2, . . . , r , define the sum

si = di + di+1 + · · ·+ dr

Also, define sr+1 to be 0.

Choose two specific si ’s, say, sL and sH , such that

χ(a + lsL) = χ(a + lsH)

Also, suppose L < H.
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Van der Waerden’s Theorem in Two Parts

An Example

As an example, consider this 2-coloring of [1, 16]. Here
N = 16, χ is as shown, a = 1, d1 = 4 and d2 = 1.

For each item (x1, x2) in X0, χ(a + d1x1 + d2x2) is red.
Examples:

for (x1, x2) = (1, 2), a + d1(1) + d2(2) = 7
for (x1, x2) = (2, 2), a + d1(2) + d2(2) = 11

Similarly, for each (x1, x2) in X1, χ(a + d1x1 + d2x2) is blue.

Our si ’s are:

s1 = d1 + d2 = 5 s2 = d2 = 1 s3 = 0
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Van der Waerden’s Theorem in Two Parts

The General Claim

Now, we are ready to show S(l + 1, 1). This statement is
simple, since there is only one nontrivial l-equivalence class:

X0 = {0, 1, . . . , l}

We want to find a′, d ′ such that

χ(a′ + d ′x) ≡ const

for all x ∈ X0.

We claim this works for

a′ = a + lsH

d ′ = sL − sH
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Van der Waerden’s Theorem in Two Parts

The Proof

Suppose that x < l . We will show that χ(a′ + d ′x) is the
same as χ(a′ + d ′l). Specifically,

χ(a′ + d ′x) = χ(a + sH l + (sL − sH)x) (1)

= χ(a + sH l + (sL − sH)0) (2)

= χ(a + sH l) (3)

= χ(a + sLl) (4)

= χ(a + sH l + (sL − sH)l)

= χ(a′ + d ′l)

There are two tricks here: getting from (1) to (2), and getting
from (3) to (4).
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Van der Waerden’s Theorem in Two Parts

χ(a + sH l + (sL − sH)x) = χ(a + sH l + (sL − sH)0)

is really saying that the following are equal:

χ(a + dLx + · · ·+ dH−1x + dH l + · · ·+ dr l)

χ(a + dL0 + · · ·+ dH−10 + dH l + · · ·+ dr l)

This is true because our choice of di ’s; specifically, since the vectors

(0, · · · , 0︸ ︷︷ ︸
L−1 times

, x , · · · , x︸ ︷︷ ︸
H−L times

, l , · · · l) and (0, · · · , 0︸ ︷︷ ︸
L−1 times

, 0, · · · , 0︸ ︷︷ ︸
H−L times

, l , · · · l)

are both in the same l-equivalence class of [0, l ]r .
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Van der Waerden’s Theorem in Two Parts

Conclusion

So, we’re done!

We started by choosing an arbitrary number of colors, r , and
an arbitrary r -coloring χ of the interval [1,N].

We then showed the existence of numbers a′, d ′ such that
χ(a′ + d ′x) was constant on the set x ∈ {0, 1, . . . , l}.
Since this set is the only nontrivial l-equivalence class when
considering S(l + 1, 1), the existence of a′ and d ′ gives the
result!

Therefore, given S(l ,m) for all m ≥ 1, we have S(l + 1, 1).
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result!

Therefore, given S(l ,m) for all m ≥ 1, we have S(l + 1, 1).

48 / 56



Van der Waerden’s Theorem in Two Parts

Conclusion

So, we’re done!

We started by choosing an arbitrary number of colors, r , and
an arbitrary r -coloring χ of the interval [1,N].

We then showed the existence of numbers a′, d ′ such that
χ(a′ + d ′x) was constant on the set x ∈ {0, 1, . . . , l}.
Since this set is the only nontrivial l-equivalence class when
considering S(l + 1, 1), the existence of a′ and d ′ gives the
result!

Therefore, given S(l ,m) for all m ≥ 1, we have S(l + 1, 1).

49 / 56



Van der Waerden’s Theorem in Two Parts

Putting it all Together

Angela showed that S(1, 1) is true, and Navid showed that if
S(l , 1) is true, then S(l ,m) is true for all m ≥ 1.

Then, I showed that if S(l ,m) is true for all m ≥ 1, then
S(l + 1, 1) is true.

Together, these show that S(l ,m) is true for all l ≥ 1, m ≥ 1.

Finally, as Angela showed, the specific case S(l , 1) is van der
Waerden’s theorem!
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Thank you for listening. We are:

Sophia Xiong
Jeremy Chiu
Julian Wong
Angela Guo
Navid Alaei

Andrew Poelstra

This presentation was part of a course at SFU taught by:

Veselin Jungic
Tom Brown
Hayri Ardal
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Additional Resources

B. L. van der Waerden, How the proof of Baudet’s conjecture
was found, in
Studies in Pure Mathematics (Presented to Richard Rado),
251-260, Academic Press, London, 1971

A.Y. Khinchin, Three Pearls of Number Theory, Garylock
Press, Rochester, N. Y., 1952

Two other classical Ramsey-type theorems: Schur’s Theorem
and Rado’s Single Equation Theorem
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