Proof of Van Der Warden's Theorem

Andrew Poelstra and Navid Alaei

Simon Fraser University
December 12, 2011
$S(\ell, m) \Longrightarrow S(\ell, m+1)$

$S(\ell, m) \Longrightarrow S(\ell, m+1)$

We proceed by induction on m. Fix ℓ and m, and suppose that $S(\ell, j)$ holds for each $j=1, \ldots, m$. Fix $r \in \mathbb{N}$.

$S(\ell, m) \Longrightarrow S(\ell, m+1)$

We proceed by induction on m. Fix ℓ and m, and suppose that $S(\ell, j)$ holds for each $j=1, \ldots, m$. Fix $r \in \mathbb{N}$.

- Then both $M=N(\ell, m, r)$ and $M^{\prime}=N\left(\ell, 1, r^{M}\right)$ exist.

$S(\ell, m) \Longrightarrow S(\ell, m+1)$

We proceed by induction on m. Fix ℓ and m, and suppose that $S(\ell, j)$ holds for each $j=1, \ldots, m$. Fix $r \in \mathbb{N}$.

- Then both $M=N(\ell, m, r)$ and $M^{\prime}=N\left(\ell, 1, r^{M}\right)$ exist.
- Let χ be an r-coloring of the interval $\left[1, M M^{\prime}\right]$.

$S(\ell, m) \Longrightarrow S(\ell, m+1)$

We proceed by induction on m. Fix ℓ and m, and suppose that $S(\ell, j)$ holds for each $j=1, \ldots, m$. Fix $r \in \mathbb{N}$.

- Then both $M=N(\ell, m, r)$ and $M^{\prime}=N\left(\ell, 1, r^{M}\right)$ exist.
- Let χ be an r-coloring of the interval [$\left.1, M M^{\prime}\right]$.

■ Define $\bar{\chi}:\left[1, M^{\prime}\right] \rightarrow\left[1, r^{M}\right]$ as follows:

$S(\ell, m) \Longrightarrow S(\ell, m+1)$

We proceed by induction on m. Fix ℓ and m, and suppose that $S(\ell, j)$ holds for each $j=1, \ldots, m$. Fix $r \in \mathbb{N}$.

- Then both $M=N(\ell, m, r)$ and $M^{\prime}=N\left(\ell, 1, r^{M}\right)$ exist.

■ Let χ be an r-coloring of the interval $\left[1, M M^{\prime}\right]$.

- Define $\bar{\chi}:\left[1, M^{\prime}\right] \rightarrow\left[1, r^{M}\right]$ as follows:

$$
\bar{\chi}\left(k_{1}\right)=\bar{\chi}\left(k_{2}\right) \Leftrightarrow \chi\left(k_{1} M-i\right)=\chi\left(k_{2} M-i\right),
$$

for each $i \in[0, M-1]$.

Let us pause here and demonstrate this construction of $\bar{\chi}$.

Let us pause here and demonstrate this construction of $\bar{\chi}$.
■ Consider the following 2-coloring χ of $[1,32]$.

Let us pause here and demonstrate this construction of $\bar{\chi}$.

- Consider the following 2-coloring χ of $[1,32]$.
- Then the coloring $\bar{\chi}$ is constructed as:

So let us continue with the proof.

So let us continue with the proof.

- As $M^{\prime}=N\left(\ell, 1, r^{M}\right)$, we may find $a^{\prime}, d^{\prime} \in \mathbb{N}$ such that $\bar{\chi}\left(a^{\prime}+x d^{\prime}\right)$ is constant on $X_{0}=[0, \ell-1]$.

So let us continue with the proof.

- As $M^{\prime}=N\left(\ell, 1, r^{M}\right)$, we may find $a^{\prime}, d^{\prime} \in \mathbb{N}$ such that $\bar{\chi}\left(a^{\prime}+x d^{\prime}\right)$ is constant on $X_{0}=[0, \ell-1]$.
- This gives a sequence, $I_{0}, \ldots, I_{\ell-1}$, of ℓ sub-intervals of length M in $\left[1, M M^{\prime}\right]$ each of which is colored the same under χ.

So let us continue with the proof.

- As $M^{\prime}=N\left(\ell, 1, r^{M}\right)$, we may find $a^{\prime}, d^{\prime} \in \mathbb{N}$ such that $\bar{\chi}\left(a^{\prime}+x d^{\prime}\right)$ is constant on $X_{0}=[0, \ell-1]$.
■ This gives a sequence, $I_{0}, \ldots, I_{\ell-1}$, of ℓ sub-intervals of length M in $\left[1, M M^{\prime}\right]$ each of which is colored the same under χ.
■ Each sub-interval is of the form $I_{x}:=\left[M\left(a^{\prime}+x-1\right)+1, M\left(a^{\prime}+x\right)\right]$, with $x \in X_{0}$.

So let us continue with the proof.

- As $M^{\prime}=N\left(\ell, 1, r^{M}\right)$, we may find $a^{\prime}, d^{\prime} \in \mathbb{N}$ such that $\bar{\chi}\left(a^{\prime}+x d^{\prime}\right)$ is constant on $X_{0}=[0, \ell-1]$.
■ This gives a sequence, $I_{0}, \ldots, I_{\ell-1}$, of ℓ sub-intervals of length M in $\left[1, M M^{\prime}\right]$ each of which is colored the same under χ.
■ Each sub-interval is of the form $I_{x}:=\left[M\left(a^{\prime}+x-1\right)+1, M\left(a^{\prime}+x\right)\right]$, with $x \in X_{0}$.
■ Consider I_{0}. By the induction hypothesis, there exist $a, d_{2}, \ldots, d_{m+1} \in \mathbb{N}$ such that

$$
a+\sum_{i=2}^{m+1} x_{i} d_{i} \in I_{0}, \quad \chi\left(a+\sum_{i=2}^{m+1} x_{i} d_{i}\right) \equiv \text { const }
$$

- Let $d_{1}=d^{\prime} M$.
- Let $d_{1}=d^{\prime} M$.

■ Consider the sets $X_{j} \subset[0, \ell]^{m+1}$, with $j \in[0, m+1]$.

- Let $d_{1}=d^{\prime} M$.

■ Consider the sets $X_{j} \subset[0, \ell]^{m+1}$, with $j \in[0, m+1]$.
■ For each $\left(x_{1}, \ldots, x_{m+1}\right) \in X_{j}$, consider

$$
\chi\left(a+\sum_{i=1}^{m+1} x_{i} d_{i}\right)
$$

- Let $d_{1}=d^{\prime} M$.

■ Consider the sets $X_{j} \subset[0, \ell]^{m+1}$, with $j \in[0, m+1]$.
■ For each $\left(x_{1}, \ldots, x_{m+1}\right) \in X_{j}$, consider

$$
\chi\left(a+\sum_{i=1}^{m+1} x_{i} d_{i}\right)
$$

■ We will consider two cases: when $x=\ell$, and when $x<\ell$.

CASE I: If $x_{1} \in[0, \ell-1]$, then $a+\sum_{i=1}^{m+1} x_{i} d_{i} \in I_{x_{1}}$, by the definition of $I_{X_{1}}$.

CASE I: If $x_{1} \in[0, \ell-1]$, then $a+\sum_{i=1}^{m+1} x_{i} d_{i} \in I_{x_{1}}$, by the definition of $I_{x_{1}}$. This gives,

$$
\chi\left(a+\sum_{i=1}^{m+1} x_{i} d_{i}\right)=\chi\left(a+\sum_{i=2}^{m+1} x_{i} d_{i}\right)
$$

and so χ is constant on each $X_{j} \subset[0, \ell]^{m+1}$, with $j \in[0, m+1]$.

CASE II: If $x_{1}=\ell$, we must also have $x_{2}=x_{3}=\cdots=x_{m+1}=\ell$.

CASE II: If $x_{1}=\ell$, we must also have $x_{2}=x_{3}=\cdots=x_{m+1}=\ell$.

- Thus the only elements we need to worry about come from $X_{m+1}=\{(\ell, \ldots, \ell)\}$.

CASE II: If $x_{1}=\ell$, we must also have $x_{2}=x_{3}=\cdots=x_{m+1}=\ell$.

- Thus the only elements we need to worry about come from $X_{m+1}=\{(\ell, \ldots, \ell)\}$.
■ It is clear that χ must take a unique value on X_{m+1}, from which the result follows.

From $S(I, m)$ to $S(I+1,1)$

■ Now, we show that if statement $S(I, m)$ is true for some I, and all values of m, then statement $S(I+1,1)$ holds.

From $S(I, m)$ to $S(I+1,1)$

■ Now, we show that if statement $S(I, m)$ is true for some I, and all values of m, then statement $S(I+1,1)$ holds.

- In this way, we increase the maximum length of arithmetic progressions that are guaranteed to exist for an r-coloring of the natural numbers.

Some Variables

So, let's get started:
■ By hypothesis, the number $N(I, m, r)$ exists for some I, all $m \geq 1$, and all $r \geq 1$.

Some Variables

So, let's get started:
■ By hypothesis, the number $N(I, m, r)$ exists for some I, all $m \geq 1$, and all $r \geq 1$.

- So, choose some r, let $N=N(I, r, r)$, and let χ be an r-coloring of $[1, N]$.

Some Variables

So, let's get started:
■ By hypothesis, the number $N(I, m, r)$ exists for some I, all $m \geq 1$, and all $r \geq 1$.

- So, choose some r, let $N=N(I, r, r)$, and let χ be an r-coloring of $[1, N]$.
- Then there exist numbers a, d_{1}, \ldots, d_{r} such that

$$
\chi\left(a+x_{1} d_{1}+x_{2} d_{2}+\cdots+x_{r} d_{r}\right)
$$

is constant on each l-equivalence class X_{i}.

■ For each $i=1,2, \ldots, r$, define the sum

$$
s_{i}=d_{i}+d_{i+1}+\cdots+d_{r}
$$

■ For each $i=1,2, \ldots, r$, define the sum

$$
s_{i}=d_{i}+d_{i+1}+\cdots+d_{r}
$$

■ Also, define s_{r+1} to be 0 .

■ For each $i=1,2, \ldots, r$, define the sum

$$
s_{i}=d_{i}+d_{i+1}+\cdots+d_{r}
$$

■ Also, define s_{r+1} to be 0 .
■ Choose two specific s_{i} 's, say, s_{L} and s_{H}, such that

$$
\chi\left(a+I_{L}\right)=\chi\left(a+I_{H}\right)
$$

Also, suppose $L<H$.

An Example

■ As an example, consider this 2 -coloring of [1, 16]. Here $N=16, \chi$ is as shown, $a=1, d_{1}=4$ and $d_{2}=1$.

An Example

■ As an example, consider this 2-coloring of [1, 16]. Here $N=16, \chi$ is as shown, $a=1, d_{1}=4$ and $d_{2}=1$.
\square For each item $\left(x_{1}, x_{2}\right)$ in $X_{0}, \chi\left(a+d_{1} x_{1}+d_{2} x_{2}\right)$ is red. Examples:

$$
\begin{array}{ll}
\text { for }\left(x_{1}, x_{2}\right)=(1,2), & a+d_{1}(1)+d_{2}(2)=7 \\
\text { for }\left(x_{1}, x_{2}\right)=(2,2), & a+d_{1}(2)+d_{2}(2)=11
\end{array}
$$

An Example

■ As an example, consider this 2-coloring of [1, 16]. Here $N=16, \chi$ is as shown, $a=1, d_{1}=4$ and $d_{2}=1$.
\square For each item $\left(x_{1}, x_{2}\right)$ in $X_{0}, \chi\left(a+d_{1} x_{1}+d_{2} x_{2}\right)$ is red. Examples:

$$
\begin{array}{ll}
\text { for }\left(x_{1}, x_{2}\right)=(1,2), & a+d_{1}(1)+d_{2}(2)=7 \\
\text { for }\left(x_{1}, x_{2}\right)=(2,2), & a+d_{1}(2)+d_{2}(2)=11
\end{array}
$$

$■$ Similarly, for each $\left(x_{1}, x_{2}\right)$ in $X_{1}, \chi\left(a+d_{1} x_{1}+d_{2} x_{2}\right)$ is blue.

An Example

■ As an example, consider this 2-coloring of [1, 16]. Here $N=16, \chi$ is as shown, $a=1, d_{1}=4$ and $d_{2}=1$.
\square For each item $\left(x_{1}, x_{2}\right)$ in $X_{0}, \chi\left(a+d_{1} x_{1}+d_{2} x_{2}\right)$ is red. Examples:

$$
\begin{array}{ll}
\text { for }\left(x_{1}, x_{2}\right)=(1,2), & a+d_{1}(1)+d_{2}(2)=7 \\
\text { for }\left(x_{1}, x_{2}\right)=(2,2), & a+d_{1}(2)+d_{2}(2)=11
\end{array}
$$

\square Similarly, for each $\left(x_{1}, x_{2}\right)$ in $X_{1}, \chi\left(a+d_{1} x_{1}+d_{2} x_{2}\right)$ is blue.

- Our s_{i} 's are:

$$
s_{1}=d_{1}+d_{2}=5 \quad s_{2}=d_{2}=1 \quad s_{3}=0
$$

The General Claim

- Now, we are ready to show $S(I+1,1)$. This statement is simple, since there is only one nontrivial $/$-equivalence class:

$$
X_{0}=\{0,1, \ldots, I\}
$$

The General Claim

- Now, we are ready to show $S(I+1,1)$. This statement is simple, since there is only one nontrivial $/$-equivalence class:

$$
X_{0}=\{0,1, \ldots, /\}
$$

■ We want to find a^{\prime}, d^{\prime} such that

$$
\chi\left(a^{\prime}+d^{\prime} x\right) \equiv \text { const }
$$

for all $x \in X_{0}$.

The General Claim

- Now, we are ready to show $S(I+1,1)$. This statement is simple, since there is only one nontrivial $/$-equivalence class:

$$
X_{0}=\{0,1, \ldots, /\}
$$

■ We want to find a^{\prime}, d^{\prime} such that

$$
\chi\left(a^{\prime}+d^{\prime} x\right) \equiv \text { const }
$$

for all $x \in X_{0}$.

- We claim this works for

$$
\begin{aligned}
a^{\prime} & =a+s_{H} \\
d^{\prime} & =s_{L}-s_{H}
\end{aligned}
$$

The Proof

■ Suppose that $x<1$. We will show that $\chi\left(a^{\prime}+d^{\prime} x\right)$ is the same as $\chi\left(a^{\prime}+d^{\prime} l\right)$. Specifically,

$$
\begin{align*}
\chi\left(a^{\prime}+d^{\prime} x\right) & =\chi\left(a+s_{H} I+\left(s_{L}-s_{H}\right) x\right) \tag{1}\\
& =\chi\left(a+s_{H} I+\left(s_{L}-s_{H}\right) 0\right) \tag{2}\\
& =\chi\left(a+s_{H} I\right) \tag{3}\\
& =\chi\left(a+s_{L} I\right) \tag{4}\\
& =\chi\left(a+s_{H} I+\left(s_{L}-s_{H}\right) I\right) \\
& =\chi\left(a^{\prime}+d^{\prime} I\right)
\end{align*}
$$

The Proof

■ Suppose that $x<I$. We will show that $\chi\left(a^{\prime}+d^{\prime} x\right)$ is the same as $\chi\left(a^{\prime}+d^{\prime} l\right)$. Specifically,

$$
\begin{align*}
\chi\left(a^{\prime}+d^{\prime} x\right) & =\chi\left(a+s_{H} I+\left(s_{L}-s_{H}\right) x\right) \tag{1}\\
& =\chi\left(a+s_{H} I+\left(s_{L}-s_{H}\right) 0\right) \tag{2}\\
& =\chi\left(a+s_{H} I\right) \tag{3}\\
& =\chi\left(a+s_{L} I\right) \tag{4}\\
& =\chi\left(a+s_{H} I+\left(s_{L}-s_{H}\right) I\right) \\
& =\chi\left(a^{\prime}+d^{\prime} I\right)
\end{align*}
$$

- There are two tricks here: getting from (1) to (2), and getting from (3) to (4).

$$
\chi\left(a+s_{H} I+\left(s_{L}-s_{H}\right) x\right)=\chi\left(a+s_{H} I+\left(s_{L}-s_{H}\right) 0\right)
$$

$$
\chi\left(a+s_{H} I+\left(s_{L}-s_{H}\right) x\right)=\chi\left(a+s_{H} I+\left(s_{L}-s_{H}\right) 0\right)
$$

is really saying that the following are equal:

$$
\begin{aligned}
& \chi\left(a+d_{L} x+\cdots+d_{H-1} x+d_{H} I+\cdots+d_{r} I\right) \\
& \chi\left(a+d_{L} 0+\cdots+d_{H-1} 0+d_{H} I+\cdots+d_{r} I\right)
\end{aligned}
$$

$$
\chi\left(a+s_{H} I+\left(s_{L}-s_{H}\right) x\right)=\chi\left(a+s_{H} I+\left(s_{L}-s_{H}\right) 0\right)
$$

is really saying that the following are equal:

$$
\begin{aligned}
& \chi\left(a+d_{L} x+\cdots+d_{H-1} x+d_{H} I+\cdots+d_{r} I\right) \\
& \chi\left(a+d_{L} 0+\cdots+d_{H-1} 0+d_{H} I+\cdots+d_{r} I\right)
\end{aligned}
$$

This is true because our choice of d_{i} 's; specifically, since the vectors

$$
(\underbrace{0, \cdots, 0}_{L-1 \text { times }}, \underbrace{x, \cdots, x}_{H-L \text { times }}, I, \cdots I) \text { and }(\underbrace{0, \cdots, 0}_{L-1 \text { times }}, \underbrace{0, \cdots, 0}_{H-L \text { times }}, I, \cdots I)
$$

are both in the same I-equivalence class of $[0, I]^{r}$.

Conclusion

So, we're done!

Conclusion

So, we're done!
■ We started by choosing an arbitrary number of colors, r, and an arbitrary r-coloring χ of the interval $[1, N]$.

Conclusion

So, we're done!
■ We started by choosing an arbitrary number of colors, r, and an arbitrary r-coloring χ of the interval $[1, N]$.
■ We then showed the existence of numbers a^{\prime}, d^{\prime} such that $\chi\left(a^{\prime}+d^{\prime} x\right)$ was constant on the set $x \in\{0,1, \ldots, /\}$.

Conclusion

So, we're done!
■ We started by choosing an arbitrary number of colors, r, and an arbitrary r-coloring χ of the interval $[1, N]$.
■ We then showed the existence of numbers a^{\prime}, d^{\prime} such that $\chi\left(a^{\prime}+d^{\prime} x\right)$ was constant on the set $x \in\{0,1, \ldots, l\}$.

- Since this set is the only nontrivial l-equivalence class when considering $S(I+1,1)$, the existence of a^{\prime} and d^{\prime} gives the result!

Conclusion

So, we're done!
■ We started by choosing an arbitrary number of colors, r, and an arbitrary r-coloring χ of the interval $[1, N]$.

- We then showed the existence of numbers a^{\prime}, d^{\prime} such that $\chi\left(a^{\prime}+d^{\prime} x\right)$ was constant on the set $x \in\{0,1, \ldots, /\}$.
■ Since this set is the only nontrivial l-equivalence class when considering $S(I+1,1)$, the existence of a^{\prime} and d^{\prime} gives the result!
- Therefore, given $S(I, m)$ for all $m \geq 1$, we have $S(I+1,1)$.

Putting it all Together

- Angela showed that $S(1,1)$ is true, and Navid showed that if $S(I, 1)$ is true, then $S(I, m)$ is true for all $m \geq 1$.

Putting it all Together

- Angela showed that $S(1,1)$ is true, and Navid showed that if $S(I, 1)$ is true, then $S(I, m)$ is true for all $m \geq 1$.
- Then, I showed that if $S(I, m)$ is true for all $m \geq 1$, then $S(I+1,1)$ is true.

Putting it all Together

- Angela showed that $S(1,1)$ is true, and Navid showed that if $S(I, 1)$ is true, then $S(I, m)$ is true for all $m \geq 1$.
- Then, I showed that if $S(I, m)$ is true for all $m \geq 1$, then $S(I+1,1)$ is true.
- Together, these show that $S(I, m)$ is true for all $I \geq 1, m \geq 1$.

Putting it all Together

- Angela showed that $S(1,1)$ is true, and Navid showed that if $S(I, 1)$ is true, then $S(I, m)$ is true for all $m \geq 1$.
- Then, I showed that if $S(I, m)$ is true for all $m \geq 1$, then $S(I+1,1)$ is true.
- Together, these show that $S(I, m)$ is true for all $I \geq 1, m \geq 1$.

■ Finally, as Angela showed, the specific case $S(I, 1)$ is van der Waerden's theorem!

Thank you for listening. We are:

Sophia Xiong
Jeremy Chiu
Julian Wong
Angela Guo
Navid Alaei
Andrew Poelstra

Thank you for listening. We are:

Sophia Xiong
Jeremy Chiu
Julian Wong
Angela Guo
Navid Alaei
Andrew Poelstra

This presentation was part of a course at SFU taught by:
Veselin Jungic
Tom Brown
Hayri Ardal

Additional Resources

- B. L. van der Waerden, How the proof of Baudet's conjecture was found, in Studies in Pure Mathematics (Presented to Richard Rado), 251-260, Academic Press, London, 1971
- A.Y. Khinchin, Three Pearls of Number Theory, Garylock Press, Rochester, N. Y., 1952
■ Two other classical Ramsey-type theorems: Schur's Theorem and Rado's Single Equation Theorem

