Proof of Van Der Warden's Theorem

Andrew Poelstra and Navid Alaei

Simon Fraser University

December 12, 2011

1/56

Van der Waerden's Theorem in Two Parts

$$S(\ell,m) \Longrightarrow S(\ell,m+1)$$

We proceed by induction on *m*. Fix ℓ and *m*, and suppose that $S(\ell, j)$ holds for each j = 1, ..., m. Fix $r \in \mathbb{N}$.

We proceed by induction on m. Fix ℓ and m, and suppose that $S(\ell, j)$ holds for each j = 1, ..., m. Fix $r \in \mathbb{N}$.

• Then both $M = N(\ell, m, r)$ and $M' = N(\ell, 1, r^M)$ exist.

We proceed by induction on m. Fix ℓ and m, and suppose that $S(\ell, j)$ holds for each j = 1, ..., m. Fix $r \in \mathbb{N}$.

• Then both $M = N(\ell, m, r)$ and $M' = N(\ell, 1, r^M)$ exist.

• Let χ be an *r*-coloring of the interval [1, MM'].

We proceed by induction on m. Fix ℓ and m, and suppose that $S(\ell, j)$ holds for each j = 1, ..., m. Fix $r \in \mathbb{N}$.

- Then both $M = N(\ell, m, r)$ and $M' = N(\ell, 1, r^M)$ exist.
- Let χ be an *r*-coloring of the interval [1, MM'].
- Define $\overline{\chi}: [1, M'] \rightarrow [1, r^M]$ as follows:

$\overline{S(\ell,m)} \Longrightarrow S(\ell,m+1)$

We proceed by induction on m. Fix ℓ and m, and suppose that $S(\ell, j)$ holds for each j = 1, ..., m. Fix $r \in \mathbb{N}$.

- Then both $M = N(\ell, m, r)$ and $M' = N(\ell, 1, r^M)$ exist.
- Let χ be an *r*-coloring of the interval [1, MM'].
- Define $\overline{\chi}: [1, M'] \rightarrow [1, r^M]$ as follows:

$$\overline{\chi}(k_1) = \overline{\chi}(k_2) \Leftrightarrow \chi(k_1M - i) = \chi(k_2M - i),$$

for each $i \in [0, M-1]$.

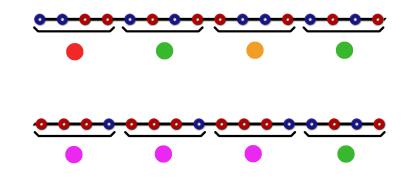
Let us pause here and demonstrate this construction of $\overline{\chi}$.

Let us pause here and demonstrate this construction of $\overline{\chi}$.

• Consider the following 2-coloring χ of [1, 32].

Let us pause here and demonstrate this construction of $\overline{\chi}$.

- Consider the following 2-coloring χ of [1, 32].
- Then the coloring $\overline{\chi}$ is constructed as:



• As $M' = N(\ell, 1, r^M)$, we may find $a', d' \in \mathbb{N}$ such that $\overline{\chi}(a' + xd')$ is constant on $X_0 = [0, \ell - 1]$.

- As $M' = N(\ell, 1, r^M)$, we may find $a', d' \in \mathbb{N}$ such that $\overline{\chi}(a' + xd')$ is constant on $X_0 = [0, \ell 1]$.
- This gives a sequence, I₀,..., I_{ℓ-1}, of ℓ sub-intervals of length M in [1, MM'] each of which is colored the same under χ.

- As $M' = N(\ell, 1, r^M)$, we may find $a', d' \in \mathbb{N}$ such that $\overline{\chi}(a' + xd')$ is constant on $X_0 = [0, \ell 1]$.
- This gives a sequence, I₀,..., I_{ℓ-1}, of ℓ sub-intervals of length M in [1, MM'] each of which is colored the same under χ.

・ロト ・ ア・ ・ ヨト ・ ヨー・ うらの

14 / 56

Each sub-interval is of the form $I_x := [M(a' + x - 1) + 1, M(a' + x)], \text{ with } x \in X_0.$

- As $M' = N(\ell, 1, r^M)$, we may find $a', d' \in \mathbb{N}$ such that $\overline{\chi}(a' + xd')$ is constant on $X_0 = [0, \ell 1]$.
- This gives a sequence, I₀,..., I_{ℓ-1}, of ℓ sub-intervals of length M in [1, MM'] each of which is colored the same under χ.
- Each sub-interval is of the form $I_x := [M(a' + x - 1) + 1, M(a' + x)], \text{ with } x \in X_0.$
- Consider I_0 . By the induction hypothesis, there exist $a, d_2, \ldots, d_{m+1} \in \mathbb{N}$ such that

$$a + \sum_{i=2}^{m+1} x_i d_i \in I_0, \qquad \qquad \chi\left(a + \sum_{i=2}^{m+1} x_i d_i\right) \equiv \text{const}$$

・ロト ・ ア・ ・ ヨト ・ ヨー・ うらの

• Let
$$d_1 = d'M$$
.

• Let $d_1 = d'M$.

• Consider the sets $X_j \subset [0, \ell]^{m+1}$, with $j \in [0, m+1]$.

• Let $d_1 = d'M$.

- Consider the sets $X_j \subset [0, \ell]^{m+1}$, with $j \in [0, m+1]$.
- For each $(x_1, \ldots, x_{m+1}) \in X_j$, consider

$$\chi\left(\mathsf{a}+\sum_{i=1}^{m+1}\mathsf{x}_i\mathsf{d}_i\right)$$

• Let $d_1 = d'M$.

- Consider the sets $X_j \subset [0, \ell]^{m+1}$, with $j \in [0, m+1]$.
- For each $(x_1, \ldots, x_{m+1}) \in X_j$, consider

$$\chi\left(\mathsf{a}+\sum_{i=1}^{m+1}\mathsf{x}_i\mathsf{d}_i\right)$$

• We will consider two cases: when $x = \ell$, and when $x < \ell$.

CASE I: If $x_1 \in [0, \ell - 1]$, then $a + \sum_{i=1}^{m+1} x_i d_i \in I_{x_1}$, by the definition of I_{x_1} .

CASE I: If $x_1 \in [0, \ell - 1]$, then $a + \sum_{i=1}^{m+1} x_i d_i \in I_{x_1}$, by the definition of I_{x_1} . This gives,

$$\chi\left(\mathbf{a}+\sum_{i=1}^{m+1}x_i\mathbf{d}_i\right)=\chi\left(\mathbf{a}+\sum_{i=2}^{m+1}x_i\mathbf{d}_i\right),$$

and so χ is constant on each $X_j \subset [0, \ell]^{m+1}$, with $j \in [0, m+1]$.

CASE II: If $x_1 = \ell$, we must also have $x_2 = x_3 = \cdots = x_{m+1} = \ell$.

CASE II: If $x_1 = \ell$, we must also have $x_2 = x_3 = \cdots = x_{m+1} = \ell$.

• Thus the only elements we need to worry about come from $X_{m+1} = \{(\ell, \dots, \ell)\}.$

CASE II: If $x_1 = \ell$, we must also have $x_2 = x_3 = \cdots = x_{m+1} = \ell$.

- Thus the only elements we need to worry about come from $X_{m+1} = \{(\ell, \dots, \ell)\}.$
- It is clear that χ must take a unique value on X_{m+1}, from which the result follows.

From S(l, m) to S(l+1, 1)

Now, we show that if statement S(l, m) is true for some l, and *all* values of m, then statement S(l+1, 1) holds.

From S(l, m) to S(l+1, 1)

- Now, we show that if statement S(l, m) is true for some l, and *all* values of m, then statement S(l+1, 1) holds.
- In this way, we increase the maximum length of arithmetic progressions that are guaranteed to exist for an *r*-coloring of the natural numbers.

Some Variables

So, let's get started:

By hypothesis, the number N(l, m, r) exists for some l, all $m \ge 1$, and all $r \ge 1$.

Some Variables

So, let's get started:

- By hypothesis, the number N(I, m, r) exists for some I, all m ≥ 1, and all r ≥ 1.
- So, choose some r, let N = N(I, r, r), and let χ be an r-coloring of [1, N].

Some Variables

So, let's get started:

- By hypothesis, the number N(1, m, r) exists for some I, all m ≥ 1, and all r ≥ 1.
- So, choose some r, let N = N(I, r, r), and let χ be an r-coloring of [1, N].
- Then there exist numbers a, d_1, \ldots, d_r such that

$$\chi(a+x_1d_1+x_2d_2+\cdots+x_rd_r)$$

29 / 56

is constant on each *I*-equivalence class X_i .

For each
$$i = 1, 2, \ldots, r$$
, define the sum

$$s_i = d_i + d_{i+1} + \cdots + d_r$$

$$s_i = d_i + d_{i+1} + \cdots + d_r$$

• Also, define s_{r+1} to be 0.

• For each $i = 1, 2, \ldots, r$, define the sum

$$s_i = d_i + d_{i+1} + \cdots + d_r$$

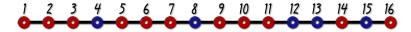
• Also, define s_{r+1} to be 0.

• Choose two specific s_i 's, say, s_L and s_H , such that

$$\chi(a+ls_L)=\chi(a+ls_H)$$

Also, suppose L < H.

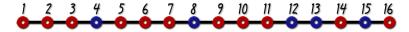
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



• As an example, consider this 2-coloring of [1,16]. Here N = 16, χ is as shown, a = 1, $d_1 = 4$ and $d_2 = 1$.

3

33 / 56

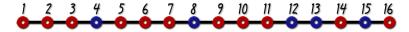


- As an example, consider this 2-coloring of [1,16]. Here N = 16, χ is as shown, a = 1, $d_1 = 4$ and $d_2 = 1$.
- For each item (x_1, x_2) in X_0 , $\chi(a + d_1x_1 + d_2x_2)$ is red. Examples:

for
$$(x_1, x_2) = (1, 2)$$
, $a + d_1(1) + d_2(2) = 7$
for $(x_1, x_2) = (2, 2)$, $a + d_1(2) + d_2(2) = 11$

(日) (同) (三) (三)

34 / 56



- As an example, consider this 2-coloring of [1,16]. Here N = 16, χ is as shown, a = 1, $d_1 = 4$ and $d_2 = 1$.
- For each item (x_1, x_2) in X_0 , $\chi(a + d_1x_1 + d_2x_2)$ is red. Examples:

for
$$(x_1, x_2) = (1, 2)$$
, $a + d_1(1) + d_2(2) = 7$
for $(x_1, x_2) = (2, 2)$, $a + d_1(2) + d_2(2) = 11$

Similarly, for each (x_1, x_2) in X_1 , $\chi(a + d_1x_1 + d_2x_2)$ is blue.

- As an example, consider this 2-coloring of [1,16]. Here N = 16, χ is as shown, a = 1, $d_1 = 4$ and $d_2 = 1$.
- For each item (x_1, x_2) in X_0 , $\chi(a + d_1x_1 + d_2x_2)$ is red. Examples:

for
$$(x_1, x_2) = (1, 2)$$
, $a + d_1(1) + d_2(2) = 7$
for $(x_1, x_2) = (2, 2)$, $a + d_1(2) + d_2(2) = 11$

Similarly, for each (x₁, x₂) in X₁, χ(a + d₁x₁ + d₂x₂) is blue.
Our s_i's are:

$$s_1 = d_1 + d_2 = 5$$
 $s_2 = d_2 = 1$ $s_3 = 0$

The General Claim

Now, we are ready to show S(l+1,1). This statement is simple, since there is only one nontrivial *l*-equivalence class:

$$X_0 = \{0, 1, \ldots, l\}$$

The General Claim

Now, we are ready to show S(l+1,1). This statement is simple, since there is only one nontrivial *l*-equivalence class:

$$X_0 = \{0, 1, \dots, l\}$$

• We want to find a', d' such that

$$\chi(a'+d'x)\equiv {\sf const}$$

for all $x \in X_0$.

The General Claim

Now, we are ready to show S(l+1,1). This statement is simple, since there is only one nontrivial *l*-equivalence class:

$$X_0 = \{0, 1, \ldots, l\}$$

• We want to find a', d' such that

$$\chi(a'+d'x)\equiv {\sf const}$$

for all $x \in X_0$.

We claim this works for

$$a' = a + ls_H$$

 $d' = s_L - s_H$

39 / 56

The Proof

■ Suppose that x < I. We will show that \u03c7(a' + d'x) is the same as \u03c7(a' + d'I). Specifically,</p>

$$\chi(a'+d'x) = \chi(a+s_H l + (s_L - s_H)x)$$
 (1)

$$= \chi(\mathbf{a} + \mathbf{s}_H \mathbf{I} + (\mathbf{s}_L - \mathbf{s}_H)\mathbf{0})$$
(2)

$$= \chi(a + s_H l) \tag{3}$$

$$= \chi(a+s_L l) \tag{4}$$

$$= \chi(a + s_H l + (s_L - s_H)l)$$

= $\chi(a' + d'l)$

・・・<
 ・・<
 ・<
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Proof

Suppose that x < I. We will show that \u03c7(a' + d'x) is the same as \u03c7(a' + d'I). Specifically,</p>

$$\chi(a'+d'x) = \chi(a+s_H I + (s_L - s_H)x)$$
 (1)

$$= \chi(a+s_H I+(s_L-s_H)0)$$
 (2)

$$= \chi(\mathbf{a} + \mathbf{s}_H \mathbf{l}) \tag{3}$$

$$= \chi(a + s_L l) \tag{4}$$

$$= \chi(a + s_H l + (s_L - s_H)l)$$

= $\chi(a' + d'l)$

There are two tricks here: getting from (1) to (2), and getting from (3) to (4).

 $\chi(a + s_{H}I + (s_{L} - s_{H})x) = \chi(a + s_{H}I + (s_{L} - s_{H})0)$

$$\chi(a + s_H I + (s_L - s_H)x) = \chi(a + s_H I + (s_L - s_H)0)$$

is really saying that the following are equal:

$$\chi(\mathbf{a} + d_L \mathbf{x} + \dots + d_{H-1}\mathbf{x} + d_H \mathbf{l} + \dots + d_r \mathbf{l})$$
$$\chi(\mathbf{a} + d_L \mathbf{0} + \dots + d_{H-1}\mathbf{0} + d_H \mathbf{l} + \dots + d_r \mathbf{l})$$

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

43 / 56

$$\chi(a + s_H l + (s_L - s_H)x) = \chi(a + s_H l + (s_L - s_H)0)$$

is really saying that the following are equal:

$$\chi(a+d_Lx+\cdots+d_{H-1}x+d_Hl+\cdots+d_rl)$$

$$\chi(a+d_L0+\cdots+d_{H-1}0+d_Hl+\cdots+d_rl)$$

This is true because our choice of d_i 's; specifically, since the vectors

$$(\underbrace{0, \cdots, 0}_{L-1 \text{ times}}, \underbrace{x, \cdots, x}_{H-L \text{ times}}, I, \cdots I) \text{ and } (\underbrace{0, \cdots, 0}_{L-1 \text{ times}}, \underbrace{0, \cdots, 0}_{H-L \text{ times}}, I, \cdots I)$$

are both in the same *l*-equivalence class of $[0, l]^r$.

So, we're done!

We started by choosing an arbitrary number of colors, r, and an arbitrary r-coloring χ of the interval [1, N].

- We started by choosing an arbitrary number of colors, *r*, and an arbitrary *r*-coloring χ of the interval [1, N].
- We then showed the existence of numbers a', d' such that $\chi(a' + d'x)$ was constant on the set $x \in \{0, 1, \dots, l\}$.

- We started by choosing an arbitrary number of colors, r, and an arbitrary r-coloring χ of the interval [1, N].
- We then showed the existence of numbers a', d' such that $\chi(a' + d'x)$ was constant on the set $x \in \{0, 1, \dots, l\}$.
- Since this set is the only nontrivial *l*-equivalence class when considering S(*l*+1,1), the existence of a' and d' gives the result!

- We started by choosing an arbitrary number of colors, *r*, and an arbitrary *r*-coloring χ of the interval [1, N].
- We then showed the existence of numbers a', d' such that $\chi(a' + d'x)$ was constant on the set $x \in \{0, 1, \dots, l\}$.
- Since this set is the only nontrivial *l*-equivalence class when considering S(*l*+1,1), the existence of a' and d' gives the result!
- Therefore, given S(l, m) for all $m \ge 1$, we have S(l+1, 1).

Van der Waerden's Theorem in Two Parts

Putting it all Together

Angela showed that S(1,1) is true, and Navid showed that if S(l,1) is true, then S(l,m) is true for all $m \ge 1$.

Putting it all Together

- Angela showed that S(1,1) is true, and Navid showed that if S(l,1) is true, then S(l,m) is true for all $m \ge 1$.
- Then, I showed that if S(l, m) is true for all $m \ge 1$, then S(l+1, 1) is true.

Putting it all Together

- Angela showed that S(1,1) is true, and Navid showed that if S(l,1) is true, then S(l,m) is true for all $m \ge 1$.
- Then, I showed that if S(l, m) is true for all $m \ge 1$, then S(l+1, 1) is true.
- Together, these show that S(I, m) is true for all $I \ge 1$, $m \ge 1$.

Putting it all Together

- Angela showed that S(1,1) is true, and Navid showed that if S(l,1) is true, then S(l,m) is true for all $m \ge 1$.
- Then, I showed that if S(l, m) is true for all $m \ge 1$, then S(l+1, 1) is true.
- Together, these show that S(I, m) is true for all $I \ge 1$, $m \ge 1$.
- Finally, as Angela showed, the specific case S(1, 1) is van der Waerden's theorem!

Thank you for listening. We are:

Sophia Xiong Jeremy Chiu Julian Wong Angela Guo Navid Alaei Andrew Poelstra Thank you for listening. We are:

Sophia Xiong Jeremy Chiu Julian Wong Angela Guo Navid Alaei Andrew Poelstra

This presentation was part of a course at SFU taught by:

Veselin Jungic Tom Brown Hayri Ardal

イロト 不同下 イヨト イヨト

- 32

55 / 56

Additional Resources

- B. L. van der Waerden, How the proof of Baudet's conjecture was found, in Studies in Pure Mathematics (Presented to Richard Rado), 251-260, Academic Press, London, 1971
- A.Y. Khinchin, Three Pearls of Number Theory, Garylock Press, Rochester, N. Y., 1952
- Two other classical Ramsey-type theorems: Schur's Theorem and Rado's Single Equation Theorem