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S(,m)= S(¢,m+1)

We proceed by induction on m. Fix £ and m, and suppose that
S5(¢,j) holds for each j =1,...,m. Fix r € N.

m Then both M = N(¢,m, r) and M" = N(¢,1, rM) exist.
m Let x be an r-coloring of the interval [1, MM'].
m Define Y : [1, M'] — [1,rM] as follows:

X(ki) = X(ke) & x(kiM — i) = x(kaM — i),

for each i € [0, M —1].
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Let us pause here and demonstrate this construction of .
m Consider the following 2-coloring x of [1,32].

m Then the coloring  is constructed as:
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So let us continue with the proof.

m As M' = N(¢,1,rM), we may find &, d’ € N such that
X(a' + xd") is constant on Xp = [0,¢ — 1J.

m This gives a sequence, Iy, ..., l;_1, of £ sub-intervals of length
M in [1, MM'] each of which is colored the same under .

m Each sub-interval is of the form
= [M(a +x —1)+ 1, M(a" + x)], with x € Xo.

m Consider lp. By the induction hypothesis, there exist
a,d,...,dm+1 € N such that

m+1 m+1
a+ Z x;d; € Iy, X (a + Z x,-d,-) = const
i=2

=2
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m let dy = d'M.
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m Let dy = d'M.
m Consider the sets X; C [0, 4], with j € [0, m + 1].
m For each (x1,...,Xmt1) € Xj, consider

m+1
X (a + Z Xidi>
i—1
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m Let dy = d'M.
m Consider the sets X; C [0, 4], with j € [0, m + 1].
m For each (x1,...,Xmt1) € Xj, consider

m+1
X (a + Z X,'d,')
i=1

m We will consider two cases: when x = ¢, and when x < /.
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CASE I: If x; € [0, — 1], then a+ >.™ 1 x;d; € I, by the
definition of /.
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CASE I: If x; € [0, — 1], then a+ >.™ 1 x;d; € I, by the
definition of /,,. This gives,

m—+1 m+1
X <a+ Zx;d;) =X <a+ ZX,’d,') ,
i=1 i=2

and so x is constant on each X; C [0,¢]™*1, with j € [0, m + 1].
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CASE II: If x; =/, we must also have xo = x3 =+ = xp11 = L.
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CASE II: If x; =/, we must also have xo = x3 =+ = xp11 = L.

m Thus the only elements we need to worry about come from
Xm+1={(¢,...,0)}.

m It is clear that y must take a unique value on X;,41, from
which the result follows.
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From S(/,m) to S(/ +1,1)

m Now, we show that if statement S(/, m) is true for some /,
and all values of m, then statement S(/+ 1,1) holds.
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From S(/,m) to S(/ +1,1)

m Now, we show that if statement S(/, m) is true for some /,
and all values of m, then statement S(/+ 1,1) holds.

m In this way, we increase the maximum length of arithmetic
progressions that are guaranteed to exist for an r-coloring of
the natural numbers.
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Some Variables

So, let's get started:

m By hypothesis, the number N(/, m, r) exists for some /, all
m>1,and all r > 1.
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Some Variables

So, let's get started:

m By hypothesis, the number N(/, m, r) exists for some /, all
m>1,and all r > 1.

m So, choose some r, let N = N(/,r,r), and let x be an
r-coloring of [1, N].

m Then there exist numbers a, di,...,d, such that
x(a+x1d1 + xada + -+ - + x,d})

is constant on each /-equivalence class X;.
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m For each i =1,2,...,r, define the sum

si=di+dip1+-+d,
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m For each i =1,2,...,r, define the sum
ss=di+di1+-+d

m Also, define s,41 to be 0.
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m For each i =1,2,...,r, define the sum
ss=di+di1+-+d

m Also, define s,41 to be 0.

m Choose two specific s;'s, say, s; and sy, such that

X(a + /SL) = X(a + /SH)

Also, suppose L < H.
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An Example

1 2 3 4 5 6 7 & 9 10 11 1213 14 1516
0—-0—-0—0—0—0—0—0—0—0—0—0—0—0—0—0

m As an example, consider this 2-coloring of [1,16]. Here
N =16, x is as shown, a=1, di =4 and d, = 1.

33/56



Van der Waerden's Theorem in Two Parts

An Example

!

2 3 4 5 6 7 & 9 10 11 1213 14 1516

m As an example, consider this 2-coloring of [1,16]. Here
N =16, x is as shown, a=1, di =4 and d, = 1.

m For each item (x1, x2) in Xo, x(a+ dix1 + daxz) is red.
Examples:

for (x1,x2) = (1,2), a+ di(1)+ d2(2)
for (x1,x2) =(2,2), a+ di(2) + d2(2) =

7
11
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An Example

!

2 3 4 5 6 7 & 9 10 11 1213 14 1516

m As an example, consider this 2-coloring of [1,16]. Here
N =16, x is as shown, a=1, di =4 and d, = 1.

m For each item (x1, x2) in Xo, x(a+ dix1 + daxz) is red.
Examples:

for (x1,x) =(1,2), a+di(1)+d2(2)=7
for (x1,x) =(2,2), a+ di(2) + d2(2) =11

m Similarly, for each (x1,x2) in X1, x(a+ dixi + dax2) is blue.
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An Example

1 2 3 4 5 6 7 & 9 10 11 1213 14 1516
0—-0—-0—0—0—0—0—0—0—0—0—0—0—0—0—0

m As an example, consider this 2-coloring of [1,16]. Here
N =16, x is as shown, a=1, di =4 and d, = 1.

m For each item (x1, x2) in Xo, x(a+ dix1 + daxz) is red.
Examples:

for (x1,x) =(1,2), a+di(1)+d2(2)=7
for (x1,x) =(2,2), a+ di(2) + d2(2) =11

m Similarly, for each (x1,x2) in X1, x(a+ dixi + dax2) is blue.
m Our s;'s are:

si=di+dr=5 sSs=dr=1 s3=0
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The General Claim

m Now, we are ready to show S(/+ 1,1). This statement is
simple, since there is only one nontrivial /-equivalence class:

Xo=1{0,1,....1}
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m Now, we are ready to show S(/+ 1,1). This statement is
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Xo=1{0,1,....1}
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x(a’ + d'x) = const

for all x € Xp.
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The General Claim

m Now, we are ready to show S(/+ 1,1). This statement is
simple, since there is only one nontrivial /-equivalence class:

Xo=1{0,1,....1}
m We want to find &', d’ such that
x(a’ + d'x) = const

for all x € Xp.
m We claim this works for

a =a+ sy

d,:S/_—SH
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The Proof

m Suppose that x < /. We will show that x(a’ + d’x) is the
same as x(a' + d’l). Specifically,

x(a' +d'x) = x(a+sul+ (st~ sm)x) (1)
= x(a+syl+ (st —sy)0) (2)
= x(a+sul) (3)
= x(a+s/) (4)
= x(a+ syl + (st —sy)!)
= x(a'+d')
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The Proof

m Suppose that x < /. We will show that x(a’ + d’x) is the
same as x(a' + d’l). Specifically,

x(a' +d'x) = x(a+sul+ (st~ sm)x) (1)
= x(a+syl+ (st —sy)0) (2)
= x(a+sul) (3)
= x(a+s/) (4)
= x(a+ syl + (st —sy)!)
= x(a'+d')

m There are two tricks here: getting from (1) to (2), and getting
from (3) to (4).
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x(a+ syl + (st — su)x) = x(a+ syl + (st — sH)0)
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x(a+ syl + (st — su)x) = x(a+ syl + (st — sH)0)

is really saying that the following are equal:
x(a+dix+-+dyax+dyl +---+dl)

x(a+d0+-+dy10+duyl+---+df)
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x(a+ syl + (st — su)x) = x(a+ syl + (st — sH)0)

is really saying that the following are equal:
x(a+dix+-+dyax+dyl +---+dl)

x(a+d0+-+dy10+duyl+---+df)

This is true because our choice of d;'s; specifically, since the vectors

(07 ,O,X,"‘ ,X,/,'”/) and (07 707(:)7... 707/7.../)
—— —— —— ——
L—1 times H—L times L—1 times H—L times

are both in the same /-equivalence class of [0, /]".
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Conclusion

So, we're done!

m We started by choosing an arbitrary number of colors, r, and
an arbitrary r-coloring x of the interval [1, N].

m We then showed the existence of numbers a’, d’ such that
x(&’' + d’'x) was constant on the set x € {0,1,...,/}.

m Since this set is the only nontrivial /-equivalence class when
considering S(/ + 1,1), the existence of a’ and d’ gives the
result!
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Conclusion

So, we're done!

m We started by choosing an arbitrary number of colors, r, and
an arbitrary r-coloring x of the interval [1, N].

m We then showed the existence of numbers a’, d’ such that
x(a" + d’x) was constant on the set x € {0,1,...,/}.

m Since this set is the only nontrivial /-equivalence class when
considering S(/ + 1,1), the existence of a’ and d’ gives the
result!

m Therefore, given S(/, m) for all m > 1, we have S(/ +1,1).
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Putting it all Together

m Angela showed that S(1,1) is true, and Navid showed that if
S(/,1) is true, then S(/, m) is true for all m > 1.
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Putting it all Together

m Angela showed that S(1,1) is true, and Navid showed that if
S(/,1) is true, then S(/, m) is true for all m > 1.

m Then, | showed that if S(/, m) is true for all m > 1, then
S(I+1,1) is true.

m Together, these show that S(/, m) is true for all / > 1, m > 1.

m Finally, as Angela showed, the specific case S(/,1) is van der
Waerden's theorem!
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Thank you for listening. We are:

Sophia Xiong
Jeremy Chiu
Julian Wong
Angela Guo
Navid Alaei
Andrew Poelstra
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Thank you for listening. We are:

Sophia Xiong
Jeremy Chiu
Julian Wong
Angela Guo
Navid Alaei
Andrew Poelstra

This presentation was part of a course at SFU taught by:

Veselin Jungic
Tom Brown
Hayri Ardal
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Additional Resources

m B. L. van der Waerden, How the proof of Baudet's conjecture
was found, in
Studies in Pure Mathematics (Presented to Richard Rado),
251-260, Academic Press, London, 1971

m A.Y. Khinchin, Three Pearls of Number Theory, Garylock
Press, Rochester, N. Y., 1952

m Two other classical Ramsey-type theorems: Schur's Theorem
and Rado's Single Equation Theorem
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