
A Brief Overview of Topological Quantum Field Theory

Andrew Poelstra∗

March 2013

∗To the extent possible under law, Andrew Poelstra has waived all copyright and related or neighbouring rights to this work. This work is
published from Canada. The full text of its license is available at https://creativecommons.org/publicdomain/zero/1.0/

1

https://creativecommons.org/publicdomain/zero/1.0/


1 Introduction

Beyond the horizon of the place we lived when we were young,
in a world of magnets and miracles,

our thoughts strayed constantly and without boundary.
—Pink Floyd

Topological quantum field theories are elegant, general, expansive mathematical theories which
hold great promise as tools for setting quantum field theory on solid ground. They were originally
created as an abstraction of the path integral formalism [1, 23] which sought to avoid the infinities
plaguing Feynmanology. Michael Atiyah [1] suggested an explicit axiomatization for a TQFT,
which has been realized in low dimensions (c.f. [6]).

The essential motivating idea behind topological field theories is that the modern physical the-
ories are defined in terms of invariance under certain group actions (e.g. gauge groups in particle
physics, diffeomorphism groups in general relativity, unitary operator groups in quantum mechan-
ics). Related to this is the idea that a system can be characterized by some number, an invariant
under the group — for example, a four-vector in relativity or a vacuum expectation value in a
field theory — or a “relative invariant” as seen in symmetry-breaking theories such as the Higgs
mechanism. In topological field theory, we are concerned with topological invariants, which are
objects computed from a topological space (usually a smooth manifold) without respect to any
metric [24]. Concretely, topological invariance means invariance under the diffeomorphism group
of the manifold.

Mathematically, enormous strides were made in geometry in the 19th and 20th centuries. Im-
portant milestones were René Thom’s theory of cobordism [22], de Rham cohomology (and co-
homology in general), and knot theory. Through theories such as the Chern-Weil theory linking
differential geometry and algebraic topology, abstract formalisms found powerful geometric ap-
plications. These were applied to physics starting in the 70’s (c.f. the original Chern-Simons
paper [3]), and largely through the work of Witten and Atiyah, flourished in the 80’s and 90’s.

More recently, they have been taken up by Louis Crane [7] as a strategy for unifying gravi-
tation and quantum physics. (Diffeomorphism invariance, the signature of general relativity, is
translated beautifully by Atiyah’s axioms into cobordism equivalence, which is a more completely
understood theory and also much more suitable to quantization.)

The purpose of this document is twofold: first, to provide an accessible overview and intro-
duction to topological quantum field theories to a beginning graduate student of mathematics or
physics; second, it is a term paper for a course in traditional field theory. As this puts serious
time constraints on the writing of this paper (and I am already pushing my luck by running so far
afield!), it is necessarily and unfortunately brief.
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Required prerequisites are a familiarity with differential geometry, category theory and tradi-
tional quantum field theory. For the most part, we cover a lot of ground on a high level and leave
detailed construction to the references, so no intimate mathematical knowledge is required.

While the presentation here is new, no claim to originality is made of the content of this paper.

2 Mathematical Preliminaries

2.1 Category Theory

The broader the brush, the bigger the fool wielding it.
—Folk wisdom1

We will briefly cover the essential features of category theory needed for this paper. For a
thorough exposition, consult MacLane’s classic text [15]; for a more readable introduction, the the
text [2] by Barr and Wells is excellent.

We will use category theory mainly as it applies to algebraic topology; a good introductory
overview is [16].
Definition 1. A category C consists of a collection of objects2 along with a collection of mor-
phisms or maps, which are arrows between the objects. Given objects A,B in C , a morphism f
between the two is denoted f : A→ B, where A is the domain of f and B is the codomain.

Let A,B,C,D be objects in C . Given two arrows f : A→ B and g : B→C, we require there exist
a composition f ◦g : A→C. Further, to each object A, there exists an identity IdA which satisfies
IdA ◦ f = f for all f : A→D and g◦ IdA = g for all g : D→ A. (Here the identity depends on A but
not D.)

Definition 2. A functor is a map between categories C and D which carries objects to objects,
arrows to arrows, and preserves composition (i.e., F( f ◦g) = F( f )◦F(g)).

Definition 3. A monoidal or tensor category is a category C with a map ⊗ : C ×C → C which is
a functor in both coordinates.

2.2 Differential Geometry and Cobordism

We assume familiarity with the theory of manifolds. For a mathematical introduction, see [13]; for
physical interpretation, the first chapter of [10].
Definition 4. Let M, N be d-dimensional oriented manifolds. If there exists a (d +1)-dimensional
manifold B such that ∂B = M∪N∗, we say B is a cobordism between M and N and that M and N

1Thanks to TallTim on #bitcoin for this quote.
2Strictly speaking, a class of objects. A class is essentially a generalized set, used to allow constructions like “the class of all sets” without

raising the spectre of Russell’s paradox. Every set is a class. A category whose class of objects is a set is called a small category, though we will
not need this notion.
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are cobordant.
Throughout this paper, N∗ denotes N with orientation reversed.

It is not hard to see that cobordism is an equivalence relation and generalizes both homeomor-
phism and diffeomorphism. By chaining cobordisms we obtain a groupoid (identityless group).

The theory of cobordism took off with René Thom’s classic paper [22], in which he gives a
complete construction of cobordism groups. The analogous problems for homeomorphism and
diffeomorphism are unsolved (in fact, it can be shown that these groups cannot be computed in
dimension ≥ 4). The generalization to cobordisms gives a clean, beautiful theory well-developed
enough to build on.

A general model for topological quantum field theories, first described by Michael Atiyah in [1],
leans heavily on cobordism. The idea is further exploited, to connect spaces whose dimension
differs by 1, by Louis Crane in his proposal [7] to bootstrap higher-dimensional TQFT’s from
lower-dimensional ones.

2.3 Lie Groups

The reader will need a familiarity with Lie groups. We will briefly cover the essential results, fo-
cusing in particular on compact Lie groups because of their simplified theory. The reader interested
in pursuing this further should read, for example, [12].
Definition 5. A compact Lie group G is a compact differentiable manifold with a group structure
such that the mapping (g,h) 7→ gh−1 of G×G into G is diffeomorphic.

It can be shown [20] that any compact Lie group can be identified by some subset of GL(n,C ),
the group of n× n complex matrices; the tangent space to the identity can then also be described
as n×n matrices, and therefore has a group structure of its own.

We can define a skew-symmetric bilinear map on this tangent space by [X ,Y ] = XY −Y X ,
where the multiplication used is ordinary matrix multiplication. An alternate approach suitable for
general Lie groups is given in [12].
Definition 6. The Lie algebra of a compact Lie group is defined as the tangent space of the identity
element, along with the above bilinear map.

Definition 7. Given some vector space V , a representation of a Lie group G is a homomorphic map
from G into Aut(V ) = GL(V ). A representation of a Lie algebra g is a map from the Lie algebra
into gl(V ) which preserves the bracket, where gl(V ) is the space of automorphisms on V (with
bracket [X ,Y ] = XY − Y X).

Notice that GL(n) is itself a Lie group; we refer to its Lie algebra, the set of all n×n matrices,
as gl(n). When we consider an arbitrary compact Lie group as being embedded in GL(n) (and thus
its algebra embedded in gl(n)), this is the standard representation.

When speaking of the standard representation, we will forget the embedding map and just treat
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G as a subgroup of GL(V ).
The Adjoint representation of a Lie group on its Lie algebra is given by G→ g; g 7→ d(ghg−1).

That is, each group element is mapped to the differential of its inner automorphism. By chasing
definitions we see that the action of such a differential on a tangent vector X is Ad(g) : X 7→ gXg−1.

The adjoint representation of a Lie algebra on itself is given by the differential of the Adjoint
representation. For a compact Lie subgroup of GL(n,C), a tangent vector X acts under this repre-
sentation by ad(X) : Y 7→ d

dt (Ad(exp(tX))Y )
∣∣
t=0.

Consider some element X ∈ g. It is well-known [13] that there exists a unique geodesic γ : R→
G with γX(0) equal the identity and γ ′X(0) = X . The mapping g→ G given by X → γ(1) is the
exponential map exp. This is locally diffeomorphic and gives a canonical way to relate a Lie group
to its algebra.

3 The Atiyah-Segal Axioms

One geometry cannot be more true than another; it can only be more convenient.
Geometry is not true, it is advantageous.

—Robert Pirsig

In this section, we state (in more mathematical terms) the axioms given by Atiyah in [1], which
in turn were based on axioms for conformal theory given by Graeme Segal3.

3.1 Notation

Fix some base field Λ, say, R or C. (There exist generalizations in which Λ is a ring, but we will
not discuss these.) We denote by VΛ the category of all vector spaces on Λ, with linear operators
as morphisms. We denote by V ∗

Λ
the category of vector spaces on Λ with basepoint. (Here “base-

point” does not refer to a zero vector, just some privileged vector in each space. Morphisms must
preserve basepoint.)

These categories are tensor categories with duality under the ordinary vector tensor product ⊗
and vector duality.

We denote by M d the category whose objects are d-dimensional manifolds and whose mor-
phisms are orientation-preserving diffeomorphisms. This is a tensor category with duality under
disjoint union and orientation reversal. Then to each M ∈M d , we write B(M) for M’s bordisms:
the set of manifolds in M d+1 which have M as their boundary.

For example, B(∅) is the set of closed (d +1)-dimensional manifolds.
3I could not track these down. Atiyah cites a paper listed as to appear, and other authors simply assume familiarity.
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3.2 Mathematical Formalism

We introduce functors Zd : M d → VΛ and Zd+1 : M d+1 → V ∗
Λ

; these functors (along with Λ

and the manifolds) are called a topological field theory (of dimension d) provided they satisfy the
Atiyah-Segal axioms, which are

1. Whenever M ∈M d , B ∈B(M), we have Zd(M) = Zd+1(B) as spaces4. Therefore, from
here on, by Zd+1(B) we mean its basepoint. We can then write Zd+1(B) ∈ Zd(M), and if
f : M→M′ is a morphism in M d which extends to a morphism f̃ : B→ B′ (where B,B′ are
bordisms of M,M′), then Zd+1( f̃ ) carries Zd+1(B) to Zd+1(B′).

2. Zd and Zd+1 are multiplicative with respect to tensor product:

(a) With ∪̇ denoting disjoint union, Zd(M1∪̇M2) = Zd(M1)⊗ Zd(M2). Similarly, for the
basepoints, Zd+1(B1∪̇B2) = Zd+1(B1)⊗Zd+1(B2). This has an important consequence:
if B ∈M d+1 and we decompose its boundary into two components M∗1 and M2, then

Zd+1(B) ∈ Zd(M∗1)⊗Zd(M2) = Hom(Zd(M1),Zd(M2))

Here Hom(X ,Y ) refers to the set of linear operators from X to Y . A proof of the second
equality can be found in any text on representation theory, such as [12, 18].

This says, explicitly, that any cobordism between manifolds M1 and M2 in M d is carried
to a linear transformation by the theory.

(b) Further, for any tensor of the form u⊗ u∗, we contract to get an element of Λ. This is
a transitivity axiom, in the following sense: when B = B1∪B2 is a cobordism between
manifolds M1 and M2 obtained by gluing together B1 and B2 along a shared boundary
(i.e., ∂B1 = M1∪M∗3 and ∂B2 = M3∪M2), then

Zd+1(B) = 〈Zd+1(B1),Zd+1(B2)〉
4It is sometimes said that Zd and Zd+1 are the same object, a bifunctor. I think this is unnecessary and confusing.
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with 〈·, ·〉 the usual contraction map from Zd(M1)⊗ Zd(M3)∗ ⊗ Zd(M3)⊗ Zd(M2) to
Zd(M1)⊗Zd(M2).

3. Since M ⊗∅ = M for M ∈M d or M ∈M d+1, the previous axiom requires Zd(∅) and
Zd+1(∅) to be idempotent. To exclude the trivial theory, we therefore impose

Zd(∅) = Λ Zd+1(∅) = 1Λ

Transitivity of cobordisms gives that Zd+1(M× I), considered as a linear operator between
Zd(M) and itself, is also an idempotent which acts as the identity on the span of Zd+1(B(M)),
which is a subspace of Zd(M). We identify Zd(M) with this subspace, or in other words,
impose

Zd+1(M× I) = IdZd(M)

From these axioms, we can derive some immediate and useful results:

1. If M ∈M d , the M-shaped torus M× S1 can be considered equally well to have boundary
M∪̇M∗ or ∅. Then by the multiplicative axiom we have

Λ = Zd(∅) = Zd(M∪̇M∗) = Zd(M)⊗Zd(M∗)

It follows that Zd(M∗) = Zd(M)∗, where Zd(M)∗ is the vector dual space of Zd(M).

In general, Zd+1(B∗) does not necessarily equal Zd+1(B)∗.

2. If we construct M× S1 by identifying the ends of the cylinder M× I, we obtain the identity
on Zd(M) contracted with itself; i.e., Zd+1(M×S1) = Tr(Id) = dim(Zd(M)).

In fact, if we identify the ends of M× I by any diffeomorphism f , we obtain a torus-style
manifold M f , and Zd+1(M f ) = Tr(Zd( f )).

3.3 Physical Interpretation

We take d to be the the spacial dimension of the universe; then (d + 1) dimensions are needed
to include time. Our manifolds in M d thus represent physical systems, while the cobordisms of
M d+1 give a transport through “time”. The vector spaces Zd(M) will be Hilbert spaces with a
Hamiltonian H; then the special cobordism M× I (M with “imaginary time”) will induce a time-
evolution operator e−itH .

If H ≡ 0, there are superficially no dynamics in time; in fact, we typically force H ≡ 0 to
preclude the existence of some preferred time axis, which would certainly be incompatible with
relativity. However, interesting behavior can still occur via cobordisms other than M× I. Such
cobordisms can describe physical processes (with some nonzero probability amplitude), giving
rise to a dynamics in a topologically-invariant way.
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The basepoint vectors Zd+1(B) ∈ Zd(M) are states (spins in Chern-Simons, lengths in Crane’s
gravity model, etc.) in Zd(M) corresponding to B; if M is the empty manifold, then Zd+1(B) ∈ Λ

is typically a vacuum expectation value.
The vector spaces themselves are state spaces corresponding to different observers. If these

spaces are isomorphic, the linear maps induced by the cobordisms are simply change-of-basis
matrices; however, this is not a necessary feature, and topological theories can describe models of
reality in which variables have no global definition (c.f. [19]).

4 Examples

Reality leaves a lot to the imagination.
—John Lennon

We begin by describing zero-dimensional theories, loosely based on Atiyah’s exposition in [1].
From there, we give a cursory overview of the Chern-Simons theory based on Wilson loops and
associated invariants. Though we will not discuss them, many theories have been constructed in
dimensions less than 4; however, there is no satisfactory theory for the case d = 45. An idea for
doing so is provided by Crane’s “dimensional ladder” [7, 8] for bootstrapping high-dimensional
theories from lower-dimensional ones, which is described in the next section.

4.1 The Zero-Dimensional Theory

In this case, our manifolds of M d are single points, and our diffeomorphism group is a symme-
try group. The impact of this is that we can describe the representation theory of compact Lie
groups (with the symmetry actions then appearing as adjoint actions on the weight spaces of the
Lie algebra, c.f. [12, Lectures 12,16]) in terms of a TQFT. We will give a brief overview of this
representation theory.

Specifically, the functor Z0 assigns a vector space V to each point; disjoint unions let us map n
points into the tensor space V ⊗·· ·⊗V︸ ︷︷ ︸

n times

. (Since the symmetry group Sn is transitive, we must have

n copies of the same vector space.)
The cobordisms are all diffeomorphisms and therefore also live in Sn. (In Atiyah’s words, there

is no interesting topology.)
For our vector space V , we can a Hilbert space by quantizing some symplectic (i.e., possessing

a closed non-degenerate 2-form) manifold. Examples of such manifolds are the phase space of
some classical or quantum Hamiltonian theory [5].

5Here “satisfactory” means “describes gravity”.
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Alternately, starting with a Lie group, there is a algebraic-geometric way to construct a sym-
plectic manifold (from a line bundle) which preserves much of the group structure. From this, we
will find that the Borel-Weil theorem gives a method of quantization — a physical interpretation
of a purely mathematical result!

We outline this process here, starting by describing the requisite theory, then following [12,
Lecture 23] (simplified to the compact case):

1. It is well known [20, Theorems 3.28, 2.15] that compact Lie groups are isomorphic to closed
unitary subgroups of GL(n,C); then Cartan subgroups will be maximal torii6. Choose a Lie
group G with algebra g. Let T be a maximal torus in G with subalgebra t. Write tC for the
complexification t⊗C, where the tensor product is taken over R. All the Lie algebra structure
is extended by C-linearity from t to tC.

2. For any representation V ′ of M, there is a finite set ∆(V ′) ⊂ t∗C (the set of complex linear
functionals on tC) called weights, and V ′ can be written

V ′ =
⊕

λ∈∆(V ′)

Vα

where each v ∈Vλ is acted on by each X ∈ tC by Xv = λ (X)v. This decomposition is unique.

Weights of the adjoint representation7 are called roots, and corresponding weight spaces are
called root spaces. Notice that zero is always a root, and has root space tC.

We can choose a (non-unique) collection Φ+ of positive roots characterized by: for every root
λ , exactly one of ±λ is in Φ+; if λ ,γ ∈Φ+ and λ + γ is a root, then λ + γ ∈Φ+.

Letting (·, ·) be the Killing form8 for g, we define a dominant weight Λ as one such that
(Λ,γ)≥ 0 for every positive root γ .

3. Since t∗C is defined by linearity, it is essentially two copies of t, and we can identify

t∗C ' t∗ ' (it)∗

With this in mind, a weight λ ∈ (it)∗ is called analytically integral if λ (X) ∈ 2πiZ for all
X ∈ t with exp(X) equal the identity. (Notice that we say the analytically integral weights
live in (it)∗ even though they are defined by their behavior as members of t∗.)

6A torus is a Lie group isomorphic to some (S1)k , where S1 = R/Z. Notice that while we treat compact Lie groups as complex linear spaces,
torii are real.

7More correctly, weights of the extension of the adjoint representation by C-linearity to the complexification of g. This complexification is
well-defined since the members of G are unitary matrices; thus g ⊆ u(n); by writing matrices as sums of Hermitian and skew-Hermitian parts, we
can obtain gl(n,C) = u(n)⊗ iu(n) and therefore write gC = g⊗ ig⊆ gl(n,C).

8The Killing form is a symmetric bilinear form on a Lie algebra most simply defined by (X ,Y ) = Tr(ad(X)ad(Y )). It can be extended by linearity
to the complexification of an algebra.
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It can be shown that an element of (it)∗ is analytically integral if and only if there exists some
homomorphism ξλ : T → C\{0} which satisfies

ξλ (exp(H)) = eλ (H)

for all H ∈ t.

4. So, choose some analytically integral weight λ ; this gives a one-dimensional representation
of T in C by ξλ . Call this representation Cλ , and write

Lλ = (G×Cλ )/∼ (gh,v)∼ (g,hv)

This can be projected into G/T by (g,z) 7→ gT and is acted on by G by g(g′,z) = (gg′,z);
from this it can be verified that Lλ is a holomorphic line bundle on G/T whose space of
global sections are acted on homogeneously (i.e., continuously and transitively) by G.

A natural question is to ask is: can we obtain irreducible representations in this way? As a
compact (thus semisimple) group, any finite-dimensional representation of G can be decomposed
as a direct sum of irreducible representations. How can we characterize these? (A reducible
representation is one that can be broken up without breaking G-invariance. Physically, this would
correspond to a theory of two worlds, unable to communicate with each other via the action of G.
This is both physically unreasonable and mathematically uneconomical.)

The answer to this question is given by the Borel-Weil theorem:
Theorem 1. (Borel-Weil) The irreducible unitary representations of G are exactly the global sec-
tion spaces of Lλ corresponding to dominant weights λ . Further, each such representation is the
highest weight representation for λ .

Now, a line bundle (or section of one) by itself is not a physical theory. To describe physics, we
need a symplectic manifold (a symplectic manifold is one with some closed nondegenerate 2-form;
this may describe classical restraints as a Lagrangian, or directly create a geometrical theory as in
GR.) Using the orbit method we obtain such a thing. Specifically, there is a canonical symplectic
structure on coadjoint orbits9 [14], which is exactly what we want.

After all this mathematical work, the physical reader should be asking what have we accom-
plished by all this nonsense? The answer comes from the theory of geometric quantization, one of
several mathematical theories intended to give a concrete description of the quantization process.
A concise overview and references galore are given in [14, Section 4.6.1], which we paraphrase
here:

A classical physical system is given by a symplectic manifold; present symmetries appear as a
group G for which the manifold is a G-set. Quantum systems, on the other hand, are described by

9For any representation (π,V ) of a Lie group G, there is a dual representation (π∗,V ∗) in the dual space of V . This representation is given
by (π∗(g) f )(v) = f (π(g−1)v) for g ∈ G, f ∈ V ∗, v ∈ V . Then the coadjoint representation of a Lie group is the dual in this sense to the adjoint
representation. The orbits come from the action of G on this representation.

10



projection lattices on Hilbert spaces [4]; symmetry groups appear as unitary representations. These
representations ought to be irreducible for the above reasons. Therefore, a natural definition of
“quantization” should be a correspondence between G-invariant symplectic manifolds and unitary
Hilbert space representations of G.

For technical reasons (related to quantum theories having a well-defined ground energy while
classical ones leave this free), it is more appropriate to seek a Poisson structure rather than a sym-
plectic one. A Poisson structure consists of a manifold with a Poisson bracket (a Lie bracket which
is also a derivation). There is a canonical Poisson bracket on the space of real-valued smooth func-
tions over any symplectic manifold; the generalization comes from the fact that Poisson brackets
may be degenerate.

For our purposes, it turns out [14] that Poisson manifolds are essentially the same thing as
coadjoint orbits!

With this context, we see that Borel-Weil, far from being an abstract muddle, gives a useful
description of the quantization of symmetric classical theory in terms of integral roots10.

Now, there was little need to use a TQFT here; we started with some compact Lie group,
noted that its root space decomposition had a symmetric structure which could be described as a
TQFT, then didn’t mention this again. However, this is not just a toy example: in Section 5 we
will see a connection between TQFT’s and TQFT’s of lower dimension, and the theory developed
here will wind up deeply embedded in the background of any higher-dimensional TQFT. Further,
this example provides intuition on the topological invariants related to unitary representations of
compact groups; this is a very common theme in topological field theory [1, 6, 7, 24].

For now, we conclude that in 0-D, while there is perhaps nothing topological to say, our axioms
can still be used to describe much of the representation theory of compact Lie groups.

4.2 Three-Dimensional Theory: Chern-Simons

The Chern-Simons theory is the one that started it all. Its history and motivation are elegantly
described by Edward Witten in his paper [24]. It is tied up with knot theory (haha!), which is a
deep and technically difficult subject. Therefore we will give only a cursory overview of the theory
in this paper.

A knot is a piecewise smooth embedding of the circle S1 in 3-space. A collection of knots is
called a link. For a 2-knot link, we can define the linking number as the number of times one knot
wraps around the other. A theorem of Gauss states that if you have two interlinked loops, and you
ran a current through one, the line integral of the magnetic field around the other gives the linking
number! This is actually the U(1) Chern-Simons theory11.

10Integral roots are well-understood; in fact, root systems form a rich mathematical theory unto themselves and are studied outside of the context
of Lie theory.

11This, and other stories, can be found on John Baez’ web page http://math.ucr.edu/home/baez/symmetries.html.
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Chern-Simons theory was originally created as a physical realization of the Jones polynomial,
a generalization of the linking number. (The Jones polynomial is a knot invariant and is mathe-
matically fascinating, but does not admit a simple concrete description — for example, the Jones
polynomial on the “unknot”, or circle, is 1, but whether the unknot is the only knot with this value
is an open question. Witten’s paper gave physical insight and new computational results for this
polynomial.)

So, let’s consider 3D Yang-Mills theory. Let M be an oriented three-manifold with line bundle
(e.g., tangent space) E, and G a gauge group which acts on E. Choose a connection Aa

µ on E (a is
the Lie algebra index) with associated covariant derivative Dµ . Write the field strength tensor as

Fi j = [Di,D j] = ∂iA j−∂ jAi +[Ai,A j]

If we had metric g, we could use the standard Yang-Mills action∫
M

√
ggikg jlTr(Fi jFkl).

However, in seeking topological invariance, we decidedly do not have a metric. Fortunately, in
3D there is a topologically invariant quantity we can use instead: the Chern-Simons action

L =
k

4π

∫
M

Tr(A∧dA+
3
2

A∧A∧A)

=
k

8π

∫
M

ε
i jkTr(Ai(∂ jAk−∂kA j)+

3
2

Ai[A j,Ak]).

(The origin and history of this quantity, which was originally described purely for geometrical
reasons [3], are summarized in [24].) The stationary points of this action are described by Fi j = 0,
the “flat connections”.

Now, this action is not (quite) Gauge invariant — under a transformation with nonzero winding
number the Lagrangian will be increased by some constant. However, in quantum field theory
we care only about the complex exponential exp iL , so if we can force this constant to be a
multiple of 2π we are okay. This can always be done by restricting the free parameter k (e.g.,
in [11, Section III] the SU(2) case is considered and the restriction is k ∈ Z).

Next, choose some oriented closed curve C on M — since M is a 3-manifold, C may be a knot,
and even in the case that M is simply connected there are non-trivial embeddings to be considered.
Denote by PC the parallel transport map via A along C. (For any point x ∈ M, the collection of
transport maps along closed curves based at x forms the holonomy group at x.)

Given some irreducible representation R of G (c.f. the previous Example), we define the Wilson
loop of C as

WR(C) = TrRPC
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These are the observables of our theory, and the problem of solving the theory amounts to calcu-
lating their expectation values. Notice that all quantities are topologically invariant.

This theory can be solved on the 3-sphere S3, but for a general manifold M the situation is more
complicated. The strategy is to cut up M into several simpler (i.e., genus 1) manifolds, find the
desired expectation values on these, then sew them back together and add up the resulting values
to get a “topological state sum”.

Let us stop for a moment to reframe this problem in terms of our general topological field
theory axioms. Suppose we cut M along some 2D manifold Σ; Σ will become a boundary for the
two resulting components of M. That is, M will be a bordism of Σ. So the state we seek on M is
(in our axiomatic language) Z2+1(Σ), which will live in the space Z2(Σ). For the theory to make
sense, both of these must be independent of the choice of Σ.

In cutting the manifold, we will also cut through Wilson loops, leaving marked points on the
new boundary. Associated to these marked points are the loops’ representations of our gauge
group G; the tensor product of these representations will be the vector space Z2(Σ). To make this
independent of Σ, we must (a) decompose carefully, and (b) use a “modular tensor category” for
our vector spaces rather than an ordinary tensor category. The correct decomposition appears to be
one involving trinions, or three-holed-spheres (or “pairs of pants”), and is described in [17], from
which we lift the following image:

Physically, what does this all mean? In the case that G = U(1), we obtain Gauss’ linking
numbers, though this is perhaps not so interesting. In the case G = SU(2), we can think of the
Wilson loops as the paths of charged particles; our decompositions are then a sort of Feynman
diagram in which the labelled points are virtual particles and the invariant sums on cuts correspond
to conservation laws. Louis Crane has suggested that the SU(2) case (with lengths instead of spins)
may also describe quantum gravity, as explained in the next section, though the details are sketchy.
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5 The Dimensional Ladder and Quantum Gravity

Time will perfect matter.
—Terrence McKenna

As our axiomatic definition uses manifolds of dimension d and (d + 1) in different ways, a
natural question to ask is what is the relationship between a d-dimensional TQFT and a (d + 1)-
dimensional one?. We notice that the d-dimensional contains a “contracted” copy of a (d + 1)-
dimensional theory. Conversely, a (d + 1)-dimensional theory can be found by “tracing out” a
d-dimensional one.

This vague notion can be made rigorous, by the process of categorification, a term invented by
Louis Crane. Categorification is an inverse process of decategorification, which means to take a
category and identify all isomorphic objects.

Before describing how categorification applies to TQFT’s, we make some general notes about
the process [7]. First, it is intuitively similar to quantization, in the sense that (a) it is an ill-
defined12 inverse of a well-defined process, (b) it creates a more complicated theory based on a
simpler one, and (c) it does so by “zooming in” on the components of the original theory to reveal
their inner structure. A (very technical) mathematical definition is given in [9], though we will not
need it here.

The idea to use categorification as a method of extending a 3D theory (in this case, Chern-
Simons) to a 4D one including gravity came from the observation that categorification of TQFT’s
seems to produce a new TQFT more often than not [8]. Crane coined the phrase “dimensional
ladder” to describe this phenomenon.

While the goal of topological quantum gravity has not been fully realized, Crane gives evidence
that categorification is a fruitful direction to pursue in [7]. We summarize his arguments here.

First, we have eight principles for a theory of quantum gravity:

1. All observations require an observer. This means that a closed universe cannot be observed;
no Hilbert space is associated to it. (Notice the philosophical similarity to Rovelli’s relational
quantum mechanics [19], which was published less than a year later.)

2. All observations are local. We consider observers as cells and associate Hilbert spaces to the
surfaces between cells.

3. Observers observe each other: the Hilbert spaces associated to surfaces within the same 3-
manifold are homomorphic to each other and are “consistent” in some sense. (Again, this is
a principle of relational QM.)

12What is meant by “ill-defined” is that categorifications are neither guaranteed to exist nor to be unique. A precise definition does exist.
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4. States of quantum gravity can be described by embedded graphs or knots. This reflects the
(discrete) topological nature of gravity, and is consistent with both string-theoretic and loop-
gravitational pictures.

5. General relativity is diffeomorphism invariant. This says that GR retains its fundamental
significance; in fact, since the Atiyah-Segal axioms are defined to produce invariants under
diffeomorphism groups, this principle is pretty-much required to describe gravity using a
TQFT. (A relativist should read this as a strong argument supporting the topological picture.)

6. General relativity is a theory of geometry: length and time intervals appear as quantum states,
subject to the same consistency and locality requirements as any other observable.

7. The Hamiltonian for general relativity is 0. This means no global time evolution; observation
of time can only be local. (A null Hamiltonian is again a characteristic of a TQFT, signaling
that we are on the right track. But notice that a TQFT does not necessarily have any notion of
“local clocks”.)

8. The classical limit is a global Hilbert space. (Topologically, this limit is taken by using
the linear maps between local observers to link them, ignoring their interactions amongst
themselves, and zooming out.)

The first three principles describe a relational picture of quantum mechanics. This is a radical
extension of the principle of relativity, espoused by Carlo Rovelli, which essentially says: not only
are time and space undefined except with respect to an observer; all observables are. The price of
this view (objective reality) may seem unpalatable to some; however, as Rovelli argues in [19,21],
the seeming paradoxes of quantum mechanics disappear in a relational context, replaced instead
by the mathematics of information theory. It is the author’s opinion that relational QM will be
required to make sense of quantum gravity.

Note that while mathematical conditions for “consistency” are given in [9], these may not be
strong enough to ensure that observers always agree. (The importance of observers agreeing cannot
be understated — the entire program of science depends on it!) It is not known what the correct
consistency axioms should look like [19].

The next three principles contain the core of the theory, describing how gravity ought to be
quantized. In the context of topological quantum field theory, they are not terribly remarkable:
they say that the invariants and relative invariants assigned to manifold bordisms (and preserved
under maps between manifolds) corresponds to the diffeomorphism invariance of general relativity.
In other words, diffeomorphism invariance is a central tenet of Crane’s theory, rather than “just
another gauge theory”.

The last principle is the least controversial. All it says is that a theory of gravity ought to match
experiment. Probably it is only there to remind mathematicians, who like to forget it.
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It is the seventh principle, the existence of local clocks, is the most interesting. After listing
these eight proposals Crane drops a bombshell: except for local clocks, the Chern-Simons TQFT
satisfies all of these principles. In other words, we “almost” already know the theory of quantum
gravity.

Indeed, if we take the manifolds of the Chern-Simons TQFT as our “observer cells”, the (uni-
tary) linear observation maps as the maps associated to cobordisms between the cells, and the loop
invariants to give probability amplitude for lengths (as opposed to spins), it is clear on a high level
that we have a good match.

Unfortunately, this statement is not as dramatic as it seems. After all, local clocks are what
we use to measure the results of experiment, and without them, we cannot make predictions. (Of
course, one could argue that compared to the string theorists’ lament “we need new mathematics”,
this is an excellent state of affairs.)

6 Closing Remarks

Not all who wander are lost.
—J. R. R. Tolkien

Mathematics and physics have a long and tightly interwoven history. Theories of Hilbert spaces,
functional analysis and integration all have their roots in finding a rigorous foundation for physi-
cists’ need to handle massive quantities of data. Conversely, abstract logical leaps in geometry led
to breakthroughs in our understanding of the potential structure of space and time. Calculus itself
was invented by Newton and Liebniz for physical purpose. Throughout the centuries, appeal to
physical intuition would give mathematics direction while mathematical rigour would ensure that
physical models were consistent and sensible.

However, the 21st century has found physicists using the Feynman calculus, by far the most
experimentally successful theory in history, with no sure footing in mathematics. This situation
has persisted for some seventy years. Meanwhile, mathematicians have spent the same period
recovering from devastating limitative results in set theory and logic, retreating fearfully to stranger
and deeper abstractions.

The natural outcome of these trends is the application of algebraic topology to quantum physics.
This is motivation behind topological quantum field theory, and as we have seen, it holds great
promise for providing a rigorous backbone to field theory and for answering unknown questions
about the nature and behavior of singularities. As experimentalists probe to higher and higher
energies, we can expect topological language to provide a framework for describing the plethora
of new results, much as the theories of gauge and quantum groups provided a framework for the
zoo of particle physics.
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Further still, algebraic topology is the natural setting for unifying the algebraic invariants of
quantum mechanics with the observer-dependent philosophy of general relativity. While there is
still much to be done, topological field theory holds great promise and may well prove to be a
critical shift in our understanding of physics and reality.
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